
Enabling Technology Modules: Version I

Responsible editor(s): Patrick Aichroth, Henrik Björklund,
Johanna Björklund, Kai Schlegel, Thomas Kurz, Antonio Perez

Volume 3

Volume 3
Enabling Technology Modules: Version 1
Patrick Aichroth, Henrik Björklund, Johanna Björklund, Kai Schlegel, Thomas Kurz, Antonio Perez

About the project: MICO is a research project project partially funded by the European Commission 7th
Framework Programme (grant agreement no: 610480). It aims to provide cross-media analysis solutions for
online multimedia producers. MICO will develop models, standards and software tools to jointly analyse,
query and retrieve information out of connected and related media objects (text, image, audio, video, of-
fice documents) to provide better information extraction results for more relevant search and information
discovery.

Abstract: This Technical Report summarizes the state of the art in cross-media analysis, metadata pub-
lishing, querying and recommendations. It is a joint outcome of work packages WP2, WP3, WP4 and WP5,
and serves as entry point and reference for technologies that are relevant to the MICO framework and the
two MICO use cases.

Projekt Coordinator: John Pereira BA
Publisher: Salzburg Research Forschungsgesellschaft mbH, Salzburg, Austria
Editor of the series: Thomas Kurz, Henrik Björklund | Contact: thomas.kurz@salzburgresearch.at
Issue: November, 2015 | Grafik Design: Daniela Gnad
ISBN 978-3-902448-45-3

© MICO 2015
Images are taken from the Zooniverse crowdsourcing project Plankton Portal that will apply
MICO technology to better analyse the multimedia content. https://www.zooniverse.org

Disclaimer: The MICO project is funded with support of the European Commission. This document
reflects the views only of the authors, and the European Commission is not liable for any use that may be
made of the information contained herein.

Terms of use: This work is licensed under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License, http://creativecommons.org/licenses/by-nc-sa/3.0/

Online: A digital version of the handbook can be freely downloaded at
http://www.mico-project.eu/technical-reports/

MICO (Media in Context) is a research project partially funded by the European
Commission 7th Framework Programme (grant agreement no: 610480).

Responsible editors

Patrick Aichroth is working for Fraunhofer IDMT and focusing on user-centric, incen-
tive-oriented solutions to the “copyright dilemma”, content distribution and media secu-
rity. Since 2006, he is head of the media distribution and security research group. Within
MICO, he is coordinating FHG activities, and is involved especially in requirements meth-
odology and gathering, related media extractor planning, and system design and imple-
mentation aspects related to broker, media extraction and storage, and security.

Henrik Björklund is an associate professor at the Department of Computing Science
at Umeå University. He received his PhD at Uppsala University, and was then employed
first at the RWTH Aachen, Germany and later at the Technical University of Dortmund,
Germany. His scientific work focuses on the theoretical foundations of XML and natu-
ral language processing. In the MICO project, he contributes to the work on sentiment
analysis and user profiling.

Johanna Björklund is Associate Professor at the Department of Computing Science
at Umeå University, and founder and COO of CodeMill, an IT-consultancy company spe-
cializing in media asset management (MAM). Her scientific work focuses on structured
methods for text classification. In MICO she is leading the activities around a multi-lingual
speech-to-text component.

Thomas Kurz is Researcher at the Knowledge and Media Technologies group of Salz-
burg Research. His research interests are Semantic Web technologies in combination
with multimedia, human-computer interaction regarding to RDF metadata, and Semantic
Search. In Mico he focuses on semantic multimedia retrieval and coordinates the overall
scientific work.

Antonio David Perez Morales is a senior software engineer. During his period at MICO
partner Zaizi, Antonio was part of the R&D department. There, he focused on creating
new products and libraries related to semantics, searches, NLP, and Machine Learning.
Antonio is also an active committer to Apache ManifoldCF and Apache Stanbol.

Kai Schlegel is a researcher at the University of Passau working on Semantic Web, Soft-
ware Engineering and modern Web Technologies. Kai has previously contributed to the
THESEUS Medico project focusing on a meta-search engine in the medical field, and to the
work package for Data Querying, Aggregation and Provenance in the FP7 CODE project.

Many different authors from all partners have contributed to this document.
The individual authors in alphabetic order are:

•	Patrick Aichroth (FhG),
•	Emanuel Berndl (University of Passau, UP),
•	Henrik Björklund (UMU),
•	Johanna Björklund (UMU),
•	Luca Cuccovillo (FhG),
•	Andreas Eisenkolb	 (University of Passau, UP),
•	Thomas Kurz (Salzburg Research Forschungsgesellschaft mbH, SRFG),
•	Antonio Perez (Zaizi Ltd., Zaizi),
•	Kai Schlegel (UP),
•	Marcel Sieland (FhG),
•	Christian Weigel (FhG).

Responsible authors

MICO – Volume

Volume 1

State of the Art in Cross-Media Analysis, Metadata Publishing, Querying and
Recommendations
Patrick Aichroth, Johanna Björklund, Florian Stegmaier, Thomas Kurz, Grant Miller

ISBN 978-3-902448-43-9

Volume 2

Specifications and Models for Cross-Media Extraction, Metadata Publishing,
Querying and Recommendations: Version I
Patrick Aichroth, Henrik Björklund, Johanna Björklund, Kai Schlegel, Thomas Kurz,
Grant Miller

ISBN 978-3-902448-44-6

Volume 3

Enabling Technology Modules: Version I
Patrick Aichroth, Henrik Björklund, Johanna Björklund, Kai Schlegel, Thomas Kurz,
Antonio Perez

ISBN 978-3-902448-45-3

Volume 4 – Publication date: December 2015

Specifications and Models for Cross-Media Extraction, Metadata Publishing,
Querying and Recommendations: Version II
Patrick Aichroth, Johanna Björklund, Kai Schlegel, Thomas Kurz, Grant Miller

ISBN 978-3-902448-46-0

Volume 5 – Publication date: June 2016

Enabling Technology Modules: Version II
Patrick Aichroth, Johanna Björklund, Kai Schlegel, Thomas Kurz, Grant Miller

ISBN 978-3-902448-47-7

Contents

1 Executive Summary 2

2 Enabling Technology Models for Extractors & Orchestration Components 4
2.1 MICO Extractors . 4

2.1.1 Extractor Setup . 4
2.1.2 Extractor Output Implementation . 5

2.2 Object and Animal Detection – OAD (TE-202) . 6
2.2.1 Deviations and additions . 7
2.2.2 Specific comments . 7

2.3 Face detection – FDR (TE-204) . 8
2.3.1 Deviations and additions . 8
2.3.2 Specific comments . 9

2.4 Temporal Video Segmentation – TVS (TE-206) . 10
2.4.1 Specific comments . 10

2.5 Audiovisual Quality – AVQ (TE-205) . 12
2.5.1 Specific comments . 12

2.6 Speech-to-text (TE-214) . 14
2.6.1 Deviations and additions . 14
2.6.2 Specific comments . 14

2.7 Sentiment analysis (TE-213) . 17
2.7.1 Deviations and additions . 17
2.7.2 Specific comments . 17

2.8 Chatroom cleaner (TE-216) . 18
2.8.1 Deviations and additions . 18
2.8.2 Specific comments . 18

2.9 Phrase Structure Parser (TE-217) . 19
2.9.1 Specific comments . 19

2.10 Audio Cutting Detection (TE-224) . 20
2.10.1 Deviations and additions . 20
2.10.2 Specific comments . 20

2.11 MICO Broker . 23
2.11.1 Orchestration . 23
2.11.2 Integration . 23
2.11.3 Early lessons learned, outlook . 24

3 Enabling Technology Models for Cross-media Publishing 26
3.1 Introduction to Multimedia Metadata Model . 26
3.2 Introduction to Metadata Model API . 29

3.2.1 Design Decisions . 29
3.2.2 Technologies . 30
3.2.3 Anno4j . 30
3.2.4 API Overview . 31

3.3 Extending Metadata Model API . 32
3.3.1 Step 1: Creating the POJOs . 32
3.3.2 Step 2: Annotating the created POJOs . 34

iii

3.3.3 Step 3: Creating the Annotation object . 36

4 Enabling Technology Models for Cross-media Querying 38
4.1 Introduction to SPARQL . 38
4.2 Introduction to SPARQL-MM . 43
4.3 Sparql-MM in Action . 48

5 Enabling Technology Models for Cross-media Recommendations 51
5.1 Recommendation architecture and technologies . 51

5.1.1 PredictionIO . 52
5.2 How to install PredictionIO . 52
5.3 Content-Based recommendation engine . 53

5.3.1 Overview . 53
5.3.2 How it works . 53
5.3.3 How to install, configure and deploy it . 54
5.3.4 Example . 55

5.4 MICO recommender system outlook . 58

6 MICO Platform Installation 59
6.1 VirtualBox Image . 59

6.1.1 Network settings . 60
6.2 Debian Repository . 61

6.2.1 Setup Debian Jessie . 62
6.2.2 Add MICO repository . 63
6.2.3 Install HDFS . 63
6.2.4 Install the MICO Platform . 67
6.2.5 Access the MICO Platform . 67

6.3 Compiling the MICO Platform API yourself . 68
6.3.1 Prerquisites . 68
6.3.2 Building . 69

iv

List of Figures

1 Broker model . 23
2 Broker messaging . 24
3 Base concept of an annotation . 27
4 Annotation example of a facerecognition result . 28
5 Modules and general design of the multimedia metadata model 29
6 Client-side RDF model generation . 30
7 Squebi SPARQL Editor . 49
8 Recommender System Architecture . 52
9 Import VirtualBox Image . 59
10 VirtualBox Network Setting . 60
11 Start Screen . 61
12 Overview page . 62

List of Tables

1 TE-204 implementation: HOG-based animal group blank image detection using OpenCV 6
2 TE-204 implementation: libccv face detection . 8
3 TE-206 implementation: Fraunhofer tvs . 11
4 TE-205 implementation: Fraunhofer bemvisual . 13
5 TE-214 implementation: ASR implementation with the Kaldi library 15
6 TE-214 implementation: Speaker Diarization with LIUM 15
7 TE-213 implementation: Implementation of sentiment analysis with Stanford CoreNLP 17
8 TE-216 implementation: Implementation of Chatroom cleaner based on CoreNLP . . . 18
9 TE-217 implementation: Implementation of the Phrase Structure parser 19
10 TE-224 implementation: Audio Cutting Detection via Inverse Decoder 21
11 TE-224 implementation: Audio Cutting Detection via Stable Tone Analysis 22
12 TE-224 implementation: Audio Cutting Detection via Microphone Discrimination . . . 22

1

1 Executive Summary

Authors: Jakob Frank, John Pereira, Christian Weigel

This technical report outlines the initial implementation of the MICO Enabling Technology Mod-
ules. The modules consist of a basic set of extractors dynamically orchestrated according to the content
as required for the use case evaluation. The report will focus primarily on adapting existing extractors.
It will include both open source as well as proprietary extractors. The document summarises the follow-
ing results and progress in the project relative to the initial specifications (see Volume 2 of this report
series):

• First version of the prototype for orchestrating extraction components.

• Prototype implementation of cross-media publishing in Apache Marmotta, including analysis re-
sults and media metadata representation.

• Prototypical implementation of the cross-media query language in Apache Marmotta.

• Prototype implementation of the cross-media recommendations.

A central part of the MICO project is the service orchestration for extractors and components. The
service orchestration component is expected to compute each input content item towards an appropriate
individual execution plan that is then followed by the available analysis components. That high-level
goal is approached in MICO following an iterative approach, where this first iteration delivers a broker
with the idea of learning by experimenting, and then proposing changes and evolution towards providing
a full orchestration solution by the next iteration.

Multimedia analysis components typically operate in isolation as standalone applications and there-
fore do not consider the context of other analyses of the same media resource. We document here a
multimedia metadata model in conjunction with a metadata API. The model will be introduced in Sec-
tion 3.1, the decision taking and a description of the API in Section 3.2. Section 3.3 will cover the
extensibility of the model and the API, allowing the model to be adapted for third parties and their
extractors.

With the introduction of the complex annotation model both annotators and humans can put media
and concepts in context. The model represents information using RDF, which makes SPARQL a good
candidate for an adequate retrieval mechanism and query language. Nevertheless some functionalities
that are necessary for proper media asset and fragment retrieval are missing, like described in [MICO2].
Here we document Multimedia Extension for SPARQL named SPARQL-MM. The extension includes
mainly relation and aggregation functions for media fragments but is under continuous development so
this description is just a snapshot of the current version.

Recommender systems have changed the way people find information. Based on behaviour patterns
and content analysis, items can be presented to the users that might be completely new to them, but
match their expectations. Within MICO, the goal and opportunity is to use various metadata types, and
apply recommendation algorithms to further enrich and extend metadata, creating richer models which
can be used for various recommendation purposes.

The underlying theme of both showcases in MICO, is the need for cross-media recommendation:
Automatic and manual annotations, contextual information and user interaction data related to various
media types can be used as input to the algorithms, resulting in recommendations for all relevant me-
dia types as output, thereby crossing media borders. For instance, a user preference for images with
lions (which may have been identified by automatic image analysis or manual annotation, and usage

2

information) can be used to recommend related images, documents, posts, videos or video fragments.
Consequently, one of the key challenges for this domain is to define which and how to use information
sources to calculate similarity as needed for a specific use case. This document also provides instructions
on how to setup and run the MICO Platform.

The MICO Platform Server runs on a Linux server providing the following MICO relevant ser-
vices: Apache Marmotta with contextual extensions, Broker, RabbitMQ, Hadoop HDFS server for bi-
nary content storage. For development and testing purpose, we provide a ready-to-use virtual image
(see Section 6.1). If you would like to install the MICO Platform on your own machine, take a look at
Section 6.2.

3

2 Enabling Technology Models for Extractors & Orchestration
Components

Authors: Patrick Aichroth, Henrik Björklund, Johanna Björklund, Luca Cuccovillo, Jakob Frank,
Thomas Köllmer, Host Stadler, Christian Weigel

A central part of the MICO project is the service orchestration for extractors and components. The
service orchestration component is expected to compute each input content item towards an appropriate
individual execution plan that is then followed by the available analysis components. That high-level
goal is approached in MICO following an iterative approach, where this first iteration delivers a broker
with the idea of learning by experimenting, and then proposing changes and evolution towards providing
a full orchestration solution by the next iteration.

2.1 MICO Extractors

MICO extractors are software components that analyse multi media content in order to produce new
content representations and meta data about that content to be fed into the MICO data model. They
are one or different implementations of the Technology Enablers that had been identified and defined
in Section 3 of Specifications and Models for Cross-Media Extraction, Metadata Publishing, Querying
and Recommendations, the second volume in the series of technical reports published by MICO.

This report and specifically this section will describe the used implementations in detail. It
aims at giving a deeper understanding on how the extractor implementations work, how they can be
parametrized and what performance can be expected. Thereby it will serve as a reference for both, fu-
ture extractor development as well as the evolution of the broker (cmp. Section 2.11). In addition, all
changes with respect to the above-mentioned report we will be describe herein.

This report also describes the basic process of the extractor set-up in this software release.

2.1.1 Extractor Setup

All available MICO extractors are provided as packages by the MICO Debian package repository. While
some extractors are publicly available, some contain closed source components and are only available
through a protected repository. If you require access to this section of the repository, you need to request
an account1. Details on how to install the platform and extractor packages can be found in Section 6.

In their runtime environment, MICO extractors are executed as system daemon services. The current
broker implementation uses a simple mime type system in order to connect inputs and outputs of extrac-
tors and orchestrate processing. Thus, running all extractor services at once would produce unnecessary
processing even of extractors that are not needed by the current processing task. Therefore we provide
an easy to use shell script that start or stops specific extractor services along with their proper parameter
configuration. In order to start an specific extractor configuration simply use2:

1 mico config extractors [extractor config file] start

After starting a specific configuration you should check the status in the MICO broker web frontend.
Before starting a new extractor chain you should stop the previous one:

1 mico config extractors [extractor config file] stop

1Simply ask on the project mailing list for username/password: office@mico-project.eu
2Script is available once the platform has been installed

4

Configuration files for different show case user stories are located in the /usr/share/mico/config
directory. Since configurations and parameter settings are under continuous development and often
subject to change, please refer to https://bitbucket.org/mico-project/extractors-public for
latest information and new configurations.

2.1.2 Extractor Output Implementation

This platform release provides a new API for persisting meta data(see Section 3.2). While this API is
available directly for Java extractors, currently there is no support for C++ implementations. Therefore
MICO extractors implemented in C++ use an additional extractor implemented in Java for the sole
purpose of persisting the native extractor annotations (usually in a proprietary XML format) into RDF.
It consumes the new content part containing the native annotation as an input and creates the RDF
annotations using the new API. Since we have decided to keep the native annotations in the unstructured
storage, too, this step introduces little overhead to an extractor chain.

5

https://bitbucket.org/mico-project/extractors-public

2.2 Object and Animal Detection – OAD (TE-202)

The object and animal detection technology enabler serves for both, detecting blank image and detect-
ing specific groups of animals. Within MICO we’ve decided to support a HOG-based (Histograms of
Oriented Gradients) [DT05] approach as a baseline implementation. In order to make the extractor pub-
licly available we’ve used OpenCV for the implementation. The extractor has been integrated using the
MICO native C++ extractor API.

Table 1 TE-204 implementation: HOG-based animal group blank image detection using OpenCV
Name TE-204 OAD hog detector

External dependencies OpenCV (=>2.4.3) compiled with libpng, libjpeg (image support)

Original licenses BSD(OpenCV), zlib/libpng license (libpng), BSD-like (libjpeg)

MICO integration license Apache License 2.0

Input data image (png, jpeg)

Output data One XML file with annotations of animal regions per image according
to [MICO2]

RDF persistence Persistence into the MICO data model (cmp. Section 3.1) via a sepa-
rate Java extractor that converts the native xml annotation content item.
See Section 2.1.2 for details.

External Parameters hit threshold : threshold for the distance between features and
SVM classifying plane ([default: required to be set]). While this is
a rather “algorithmic” parameter its effect is just: the higher the less
animals get detected (false negatives) but the more gets detected accu-
rately (true positives). Usual values are in the range of 0.8 . . .1.5. In
future version that parameter will be transformed into a better under-
standable one (e.g. three stages of accuracy)

Internal Parameters scale0 : Coefficient of the detection window increase. ([de-
fault:1.05]). Basically affects accuracy of detection.
group threshold : Coefficient to regulate the similarity threshold.
When detected, some objects can be covered by many rectangles. 0
means not to perform grouping ([default:2])

Additional requirements Training model file needs to be provided (OpenCV’s yaml persistence
format is used). A preliminary work in progress model is shipped
along with the extractor.

6

2.2.1 Deviations and additions

There is no deviation from the initial specification. In this report, the baseline HOG implementation
is provided. Within the next development phase we plan to integrate a deformable part based model
(DPM) approach [Fel+10].

2.2.2 Specific comments

Detectable-species Training Model: In this first implementation of the extractor we’ve trained a model
for hoofed animals with horns. Manual annotation of a comprehensive training set consisting of several
hundreds of image for each class (animal vs. no animal) is a quite time consuming task. We’ve opted
for hoofed animal since a vast number of species captured in wild by the Snapshot Serengeti project
are such animals (gazelles, hartebeests. etc.). For both the HOG as well as the future DPM detector
new models will be trained in further meaningful groups in order to cover the majority of the Snapshot
Serengeti animal types.

RDF persistence: While the current implementation uses a “proxy” extractor written in Java in
order to produce RDF annotations the future version will use the native API.

7

2.3 Face detection – FDR (TE-204)

In order to make the face detector publicly available we opted for the integration of an open source
implementation. We chose the recent version of libccv, that includes a comprehensive state-of-the-art
face detection algorithm based on a modified version of SCD (SURF Cascade Detector) [LZ13]. The
library is written in C and we have integrated it into the C++ extractor API of MICO.

Table 2 TE-204 implementation: libccv face detection
Name TE-204 FDR ccv facedetection

External dependencies libccv 0.7 (http://libccv.org/), ffmpeg (video support), libpng,
libjpeg (image support)

Original licenses BSD 3-clause (libccv software), Creative Commons Attribution 4.0 In-
ternational License.(libccv data models), GPLv2 (ffmpeg), zlib/libpng
license (libpng), BSD-like (libjpeg)

MICO integration license Apache License 2.0

Input data video (mp4 container) or image (png, jpeg)

Output data One xml file per video with annotations of face regions per frame ac-
cording to [MICO2]

RDF persistence Persistence into the MICO data model (cmp. 3.1) via a separate Java
extractor that converts the native xml annotation content item. See
Section 2.1.2 for details.

External Parameters size : the smallest face size to be detected ([default:48x48 pixels])
min neighbors : groups objects that intersect each other (options:
[default:yes, no, min. number])

Internal Parameters step through : step size of detection ([default:4])
interval : number of interval images between full and half size
(pyramid) ([default:5])

Additional requirements training model file needs to be provided (sqlite3 format). A model for
frontal faces is shipped with the extractor package.

2.3.1 Deviations and additions

We initially planned to use a proprietary licensed Fraunhofer component for face detection. One reason
was the superior performance in terms of speed and accuracy compared to standard open source imple-
mentations (e.g. Viola-Jones Boosted Cascades in OpenCV). With the availability of libccv state-of-the
art accuracy is available as open source implementation at the cost of speed (see next section).

8

http://libccv.org/

2.3.2 Specific comments

Performance: Although the accuracy of the SCD is competitive the used implementation is not real
time capable (i. e. running the analysis at the time of the video length). In a short test we’ve estimated
approx. 8× the video length on a Core 2 Duo processor, single threaded where already reduced to
frame size to 480px width. There might be space for tuning the algorithm parameters towards better
performance. libccv also provides a BBF(Brightness Binary Feature) based detector and model which
might be employed which increases the speed by factor 2 by sacrificing accuracy. On the other hand
BBF detection has been rendered obsolete by the main author of the library and may not be available in
future versions.

Temporal Face Detection: Another drawback of using libccv is its design towards images. It
does not provide any mean of tracking a face over time directly. Therefore in the first version the
annotations will be on a per frame basis not having any ids. We may combine the libccv object tracker
with the face detector in order to get temporal face tracks.

Training Model: The training model that comes with libccv is trained for frontal faces. If the
detection of rotated or tilted faces is required, a new model needs to be trained with manually annotated
data which is a quite elaborative task and may only be considered when there is no other option.

RDF persistence: While the current implementation uses a “proxy” extractor written in Java in
order to produce RDF annotations the future version will use the native API. Currently we are only
able to put the region information only on a per frame basis which would – in real showcase scenarios
– flood the triple store with annotations when videos are used as input. If we succeed in creating face
tracks from the library we consider to use smarter annotation models such as interpolated key framed
regions in order to reduce the amount of data persisted in the triple store.

9

2.4 Temporal Video Segmentation – TVS (TE-206)

Temporal video segmentation provides detection of edited shot boundaries and key frame within these
boundaries. Since there is no ready to use comprehensive open source library available for that purpose,
within MICO we use the proprietary Fraunhofer tvs library. Table 3 gives the overview.

2.4.1 Specific comments

Performance: Depending on the processing settings the library is capable of processing a video in real
time or faster.

Output: The TVS extractor provides outputs of different kinds of media: annotations in struc-
tured text and/or thumbnail images. In the current MICO platform system the desired behaviour must
be set via CLI parameter during extractor process start-up. In future version it might be configured
during runtime using new platform functionalities.

RDF persistence: While the current implementation uses a “proxy” extractor written in Java in
order to produce RDF annotations the future version will use the native API. We keep the amount of
data for the native extractor annotations small by consequently removing redundant information by
grouping frames that are neither shot boundaries nor key frames).

10

Table 3 TE-206 implementation: Fraunhofer tvs
Name TE-206 TVS temporalvideosegmentation

External dependencies Fraunhofer tvs, ffmpeg (video support), ImageMagick++ (key frame
output)

Original licenses proprietary license (tvs), GPLv2 (ffmpeg), ImageMagick License

MICO integration license Apache License 2.0 / proprietary

Input data video (mp4 container)

Output data One XML file per video with annotations of temporal regions for shots,
scenes and key frames according to [MICO2], alternatively the key
frames can be delivered as images (png, jpeg)

RDF persistence Persistence into the MICO data model (cmp. Section 3.1) via a sepa-
rate Java extractor that converts the native xml annotation content item.
See Section 2.1.2 for details.

External Parameters tempDir - Process writeable directory for temporary files)
outputFormat - Output mode of the extractor: [default:XML, JSON,
JPEG, PNG])
thumbType - Specifies for which frames thumb nails are created: [de-
fault:KEYFRAMES, SHOT BOUNDS])
thumbSize - Specifies the pixel size of the longest thumbnail edge:
[default:160])

Internal Parameters KEYFRAME MINIMUM DISTANCE - min. distance of key frames [default:
5]
KEYFRAME MAXIMUM DISTANCE - max. distance of key frames [default:
1000]
KEYFRAME MINIMUM DIFFERENCE - similarity measure for key frames
[default: 0.2f]
DOWNSCALE WIDTH/HEIGHT AND FASTPROCESSING - Speeds up pro-
cessing time but may sacrifice accuracy
SHOT DETECTION WORKING WINDOW/ OVERLAP - temporal window
used for shot detection decision and its overlap [default: 100/30]
KEYFRAME EXTRACTION WORKING WINDOW - temporal window used for
key frame detection decision [default: 300]

Additional requirements none

11

2.5 Audiovisual Quality – AVQ (TE-205)

The AVQ extractor provides measures for visual (and in later versions also auditive) quality using no-
reference algorithms that is algorithms that do not need a video for comparison. We use the comprehen-
sive Fraunhofer IDMT Broadcast Error Monitoring (BEM) library within this MICO extractor.

2.5.1 Specific comments

Performance: Depending on the processing settings the library is capable of processing a video in real
time or faster.

Output: The BEM extractor provides outputs that comprises a very low level semantic level of
annotations using scalar technical measures for each frame of a video. This creates two challenges we
address in MICO.

1. We will combine the single technical measures into one traffic light kind of measure we call media
quality. The media quality represents a accumulated, more understandable quality measure. It is
the weighted combination of selected quality features / events. In order to find the right selection
and weighting we will conduct further experiments within MICO.

2. We need to reduce the amount of data when storing video annotations to the RDF model. We may
target a similar approach as proposed for the face detection extractors (cmp. Section 2.3) by using
SVG animation kind of description for the temporal description of the quality of a video.

RDF persistence: While the current implementation uses a “proxy” extractor written in Java in order
to produce RDF annotations the future version will use the native API.

12

Table 4 TE-205 implementation: Fraunhofer bemvisual
Name TE-205 AVQ bemvisual image and TE-205 AVQ bemvisual video

External dependencies Fraunhofer bem (Broadcast Error Monitoring)

Original licenses proprietary license (bem), GPLv2 (ffmpeg)

MICO integration license Apache License 2.0 / proprietary

Input data video (mp4 container), image (portable pixmap)

Output data One xml file per video with annotations of quality measures per frame
according to [MICO2]. For each type of quality measure a scalar value
per frame is provided.

RDF persistence Persistence into the MICO data model (cmp. Section 3.1) via a sepa-
rate Java extractor that converts the native xml annotation content item.
See Section 2.1.2 for details.

External Parameters events - The kind of error to be detected [BLUR, BLOCKING,
RINGING, INTERLACE, FREEZE, OVEREXPOSURE, UNDER-
EXPOSURE, BLACKFRAME, FIELDORDER TFF/BFF, HBLACK-
BARS, VBLACKBARS]. By default, all events are set to be active.
FREEZE MIN DURATION - Number of frozen frames before sending a
freeze event [default: 5]
BLOCKING RESOLUTION - Processing region size on which the block-
ing detection is performed.[default: 8]

Internal Parameters BLUR RESOLUTION - Processing region size on which the blur detec-
tion is performed. [default: 5]
FREEZE THRESHOLD - Freeze threshold to adjust the sensitivity. [de-
fault: 3.0]
INTERLACE PREFILTER THRESHOLD - [default:]
INTERLACE THRESHOLD - Threshold to adjust the active region for in-
terlace processing. [default: 30]
BLUR LEVEL Blur processing level allowing coarse blur detection. [de-
fault: 2]
RINGING LEVEL - Ringing processing level allowing coarse ringing de-
tection. [default: 2]
BLOCKING LEVEL - Blocking processing level allowing coarse block-
ing detection. [default: 2]

Additional requirements none

13

2.6 Speech-to-text (TE-214)

Automatic speech recognition (ASR) takes as input an audio stream with speech and outputs a tran-
scription as plain text. ASR is useful in itself, e.g., to generate subtiles or make content indexable via
text-driven approaches, but also as an intermediate step towards sentiment analysis, named entity recog-
nition and topic classification. In the context of the MICO Showcases, ASR is relevant for the News
Media scenario (US-18), to make videos searchable through keywords.

In the initial phase of the MICO project, we evaluated several open-source and proprietary ASR
libraries. The outcome of the experiments are published on the project’s webpage3. Given the results,
we decided to base MICO’s ASR capabilities on the C++ library Kaldi, as it outperformed the other
open-source alternatives and was at the level of some of the commercial systems. Kaldi also has the
advantages of being modern and extensible, and having a business-friendly license.

The major disadvantage of Kaldi is that the system supports fewer languages than the more es-
tablished alternatives, but this is will likely be remedied over time, as more language-models become
available. As an effort in this direction, we are currently converting language models for Arabic and
Italian from the CMU Sphinx format to one suitable for Kaldi.

There were initially problems with performance of the ASR extractor where large input audio files
would cause Kaldi to consume too much RAM to be manageable. This issue was resolved by in-
troducing a precomputing extractor which provide segmentation information to enable the Kaldi ex-
tractor to make informed choices in divided the input file into managable parts. An uninformed ap-
proach would affect the quality of the analysis which is why this approach was chosen. The seg-
ment information is extracted by a speaker diarization tool provided by LIUM (http://www-lium.univ-
lemans.fr/diarization/doku.php/welcome). Not all information extracted is used, such as identified
speakers et cetera. This extractor is mainly a wrapper for the command line JAR-tool provided by
LIUM, with the code behind it open sourced. As a last resort, if a segment produced by this extractor is
too large, the Kaldi extractor will break these down.

2.6.1 Deviations and additions

• Deviation: In the initial requirements, the assumption was a focus was on American English. This
has now shifted towards Italian and Arabic after input from the use-case partners.

• Deviation: The addition of a preprocessing extractor is a deviation from the initial chain of anal-
ysis.

• Addition: Improved language support to support the News Media use-case (US-18)

• Addition: Adjusted configuration to save system resources

2.6.2 Specific comments

ASR is still in its infancy, and requires time and effort to mature. Leading commercial systems achieve
an accuracy of approx. 85 percent in the best possible setting, that is, with a single male speaker working
from a manuscript, with no background noise and high-quality audio. Open-source systems tend to lie
10-15 percent lower on the same content. Under less favorable circumstances, for example a typical
YouTube clip, the accuracy can easily drop to 50%. Despite these facts, the output can still be useful to
search content by keywords, or to sort it by topic.

3http://www.mico-project.eu/experiences-from-development-with-open-source-speech-recognition-libraries/

14

Table 5 TE-214 implementation: ASR implementation with the Kaldi library

Name mico-extractor-speech-to-text (http://kaldi-asr.org/)

Original license Apache license, version 2.0

MICO integration license Apache license, version 2.0

External dependencies Kaldi, Boost, ATLAS, BLAS, gfortran3

Input data Diarization segment information (XML) (and previous content part au-
dio wav file via SPARQL query.)

Output data Time-stamped word transcriptions (XML)

RDF persistence Persistence into the MICO data model via a separate Java extractor
converting each time-stamped word into a content part.

Internal Parameters SAMPLING RATE: 8000, MAX SEGMENT SIZE SEC: 30 (used to
break too large segments down).

Additional requirements A language model must be provided (default installed with Debian
package)

Table 6 TE-214 implementation: Speaker Diarization with LIUM

Name mico-extractor-diarization (http://www-lium.univ-
lemans.fr/diarization/doku.php/welcome)

Original license Apache license, version 2.0

MICO integration license Apache license, version 2.0

External dependencies LIUM Speaker Diarization tool

Input data Audio wav file

Output data Time-stamped segments containing speech, annotated with diarization
information (XML).

RDF persistence Not supported, as this is a precomputiation of the Kaldi extractor

Additional requirements None.

15

Another aspect worth mentioning is that ASR systems are very resource intensive. The language-
models used to represent language typically requires a couple of gigabytes of disk, and the computations
involved are CPU intensive. Future systems will likely have similar requirements, but this will be
mitigated by faster processing kernels, higher parallelization, and lower costs of disk and memory.

16

2.7 Sentiment analysis (TE-213)

Sentiment analysis consists in identifying and extracting subjective opinion in written text. This form
of analysis is relevant for the Zooniverse showcases (US-27,US-28,US-29,US-54,US-58), where we
develop tools that automatically notify researches and draw their attention to questions, controversies,
or scientifically relevant discussions in the forum.

The implementation of sentiment analysis in MICO is written in Java and based on the Stanford
CoreNLP library. We chose this solution because it is extensible, supports a wide-range of natural-
language processing tasks, and because of its general high quality.

Table 7 TE-213 implementation: Implementation of sentiment analysis with Stanford CoreNLP

Name CoreNLP 3.4 (http://nlp.stanford.edu/software/corenlp.shtml)

Original license GNU General Public Licence, version 3+

MICO integration license GNU General Public Licence, version 3+

External dependencies -

Input data Normalized text (normalization is offered by TE-216)

Output data Tuples of sentences and associated polarity value, represented as plain
text or JSON-LD, depending on configuration

RDF persistence Currently not supported

External Parameters -

Internal Parameters -

Additional requirements -

2.7.1 Deviations and additions

TE-213 is largely unaltered compared to [MICO2]. If time allows, future versions will also take syn-
tactical information into account, so as to improve the extractor’s accuracy.

2.7.2 Specific comments

The output of TE-213 can grow quite large, because it represents each sentence in the input file together
with a numerical value indicating the sentence’s polarity. For this reason, the files are kept in the binary
storage.

17

2.8 Chatroom cleaner (TE-216)

The purpose of the chatroom cleaner is to normalize textual content, e.g., from the Zooniverse user
forums, to make it more suitable for MICO’s textual analysis tools. The normalisation consists in e.g.,
removing xml-formatting, non-standard characters, superfluous white spaces, and so forth.

Like the sentiment-analysis tool (TE-213), the implementation is written in Java and based on the
Stanford CoreNLP library. CoreNLP is an attractive option because it is extensible, supports a wide-
range of natural-language processing tasks, and because of its general high quality.

Table 8 TE-216 implementation: Implementation of Chatroom cleaner based on CoreNLP

Name CoreNLP 3.4 (http://nlp.stanford.edu/software/corenlp.shtml)

Original license GNU General Public Licence, version 3+

MICO integration license GNU General Public Licence, version 3+

External dependencies -

Input data Plain or xml/html-formatted text

Output data Plain text

RDF persistence Currently not supported

External Parameters -

Internal Parameters -

Additional requirements -

2.8.1 Deviations and additions

Since [MICO2], functionality for parsing has been broken out in a separate component, i.e., the phrase-
structure parser.

2.8.2 Specific comments

The current version of the chatroom cleaner can handle xml formatted input. Future versions will have
improved support for handling non-standard characters and other normalisation tasks.

18

2.9 Phrase Structure Parser (TE-217)

The purpose of the phrase structure parser is to extract syntactic information from natural language text.
For each sentence in the text, the parser produces a phrase structure tree.

The implementation is written in Java and based on the Stanford CoreNLP library. CoreNLP is
an attractive option because it is open source, extensible, supports a wide-range of natural-language
processing tasks, and because of its general high quality.

Table 9 TE-217 implementation: Implementation of the Phrase Structure parser using Stanford
CoreNLP

Name CoreNLP 3.4 (http://nlp.stanford.edu/software/corenlp)

Original license GNU General Public Licence, version 3+

MICO integration license GNU General Public Licence, version 3+

External dependencies -

Input data Plain text (can handle XML markup)

Output data XML

RDF persistence Currently not supported

External Parameters -

Internal Parameters -

Additional requirements -

2.9.1 Specific comments

The current version of the phrase structure parser provides much more information than the bare parse
trees in its output. This includes tokenization, named entity recognition, etc. In future versions, this
extra information should be optional.

19

2.10 Audio Cutting Detection (TE-224)

All extractors for Audio Cutting Detection (ACD) are based on pre-existing proprietary C++ compo-
nents by Fraunhofer IDMT, which were provided as a single library. In order to improve modularity, we
decided to implement and integrate within the C++ extractor API of the MICO system one component
for each ACD method described in citeMICO2.

The first implementation of ACD, addressing the Inverse decoder algorithm, is detailed in Table 10,
the second implementation of ACD, based on Stable tone analysis, is detailed in Table 11, and the third
implementation of ACD, addressing the Microphone discrimination method, is detailed in Table 12.

2.10.1 Deviations and additions

The three implemented extractors for TE-224 adhere to the description in [MICO2]. The only two
deviation, concerning ST-ACD and MD-ACD, are the following:

• Deviation: In the initial description, ST-ACD addresses stable tones with arbitrary frequencies,
but the current implementation is restricted to the analysis of the Electrical Network Frequency,
i.e. 50 Hz of 60 Hz.

• Deviation: In the initial description, MD-ACD receives an arbitrary input segmentation to be
verified. Due to the current API being unable to receive this external input, the extractor looks for
a change of the recording device every 7 seconds.

More information concerning the rationale of the current deviation of ST-ACD is reported in Sec-
tion 2.10.2.

2.10.2 Specific comments

In the current implementation, the extractors for TE-224 are able to run concurrently on the same or on
different input audio files. Moreover, each extractor is able to analyze more than one file at once. It is
not recommended, however, to register the same extractor on two independent MICO platforms at once:
In this very specific case, the output of the duplicated extractor may be corrupted.

The ST-ACD extractor, in general, requires to verify the presence of the target stable tone, before
being executed. This verification, however, is yet to be modeled and included in the complex processing
of the MICO Broker. At the present, we foresee three possible approaches:

1. User verified The user can verify the presence of the stable tone in a high resolution spectrogram,
and notify the outcome to the MICO broker

2. Semi automated The user asks for a specific stable tone, and the system starts the analysis after
verifying the presence of the stable tone in an automated fashion

3. Fully automated The system automatically searches for and detects candidate stable tones, and
starts the analysis accordingly

While the first approach may already be implemented and included, the second and third one require
some basic research before being included. The current choice is to already allow the analysis of stable
tones related to the Electrical Network Frequency (50 Hz or 60 Hz), which can be considered as one of
the most likely stable tones. The verification of its presence is left to the user using external tools, until
the MICO work flow is better determined.

20

The MD-ACD extractor currently requires a pre-segmentation, which may be provided by any ex-
tractor determining locations where a change of recording device may be expected, e.g. ID-ACD and
ST-ACD (TE-224), or Temporal Video Segmentation (TE-206). A future extension of MD-ACD is going
to leverage the current algorithm, and to automatically determine cutting points, instead of confirming
previously suspect ones as in the current version.

Table 10 TE-224 implementation: Audio Cutting Detection via Inverse Decoder

Name Inverse Decoder ACD (ID-ACD)

Original license Proprietary license
MICO integration license Public MICO extractor / proprietary C++ library
External dependencies -

Input data One audio (wav) file. This file is supposed to be a decoded - and
possibly modified - version of a previously encoded audio file

Output data One xml file
RDF persistence Persistence into the MICO data model (cmp. Section 3.1) via a sepa-

rate Java extractor that converts the native xml annotation content item.
See Section 2.1.2 for details.

External Parameters -
Internal Parameters Target set of encoding schemes to be addressed, i.e. mp3, aac, mp3pro,

he-aac
Additional requirements -

21

Table 11 TE-224 implementation: Audio Cutting Detection via Stable Tone Analysis

Name Stable tone analysis ACD (ST-ACD)

Original license Proprietary license
MICO integration license Public MICO extractor / proprietary C++ library
External dependencies -

Input data One audio (wav) file
Output data One xml file
RDF persistence Persistence into the MICO data model (cmp. Section 3.1) via a sepa-

rate Java extractor that converts the native xml annotation content item.
See Section 2.1.2 for details.

External Parameters Target analysis frequency
Internal Parameters Allowed variance of the stable tone
Additional requirements -

Table 12 TE-224 implementation: Audio Cutting Detection via Microphone Discrimination

Name Microphone discrimination ACD (MD-ACD)

Original license Proprietary license
MICO integration license Public MICO extractor / proprietary C++ library
External dependencies -

Input data One audio (wav) file
Output data One xml file
RDF persistence Persistence into the MICO data model (cmp. Section 3.1) via a sepa-

rate Java extractor that converts the native xml annotation content item.
See Section 2.1.2 for details.

External Parameters -
Internal Parameters Allowed variance of the correlation of the estimated microphone fre-

queny responses, granularity of the detected segmentation
Additional requirements Presence of a pre-trained model, distributed together with the closed

source library

22

2.11 MICO Broker

2.11.1 Orchestration

The MICO Message Broker takes care of orchestrating the communication between analysis services
and the analysis workflow for content. It’s implemented on top of RabbitMQ4, following the principles
of AMQP5. The model6 is very simple and outlined by Figure 1. The main business of the broker is

Figure 1 Broker model

to orchestrate different analysis services (extractors) when content is submitted. That is implemented
using two different queues: the “content item input queue” for receiving new content and a temporary
queue called “content item reply to queue” where each analysis service sends its results.

The broker also provides the basic infrastructure for service registration. That requires two more
queues: a “registry queue” for handling analysis service registration, and each service discovery event
creates a temporary “reply-to queue” for taking care of service registration and analysis scheduling. In
addition two RabbitMQ exchanges are needed: service registry for handling new service registration
events and service discovery for sending discovery requests on startup time.

To keep the overhead minimal, especially in distributed systems, meta-data is directly stored to Mar-
motta and the content parts are read or written directly accessing the storage layer. It turned out, that
configuring each component manually is very error prone. Therefore the necessary configuration infor-
mation is globally distributed by the broker. This is accomplished using a queue named “configuration
discovery”, where each client can request the necessary configuration information. The reply is sent via
a temporary queue, created by the questioner and sent together with the request.

2.11.2 Integration

The main idea is to decouple the extractors from their orchestration. The advantages of this approach
are the freedom of the programming language the extractors are written in, and the potential distribution
of the orchestration tasks. Therefore the integration of the broker in the platform is done via AMQP for
communication and Protobuf7 for serializing data. For convenience purposes the Event API, available
in Java and C++, implements the basic set of instructions required by the extractors.

4https://www.rabbitmq.com/
5Advanced Message Queuing Protocol 1.0, https://www.amqp.org/
6In this context, it is helpful to be familiar with the AMQP Model. An introduction is available at :

https://www.rabbitmq.com/tutorials/amqp-concepts.html
7Protocol Buffers, https://developers.google.com/protocol-buffers/

23

Figure 2 Broker messaging

2.11.3 Early lessons learned, outlook

The alpha version was quickly assembled around the end of the first year of the project. We have invested
quite substantial work on stabilising and making the broker robust enough for being used inside the
MICO Platform. Most parts of the setup actually work quite well, especially RabbitMQ as messaging
infrastructure and Protobuf should be kept if possible. But there are still some critical aspects that we
have realized cannot be solved by applying engineering methods on the current broker, but require a
major structural re-design for the next iteration: The orchestration of the different extractors is a much
more complex task than the solution we outlined by this first prototype is able to cope. Here we try to
summarize the key findings in order to feed the next requirements phases:

• The assumption that each extractor generates one single output has turned out to be insufficient.
During our experimentation, we identified several extractors where more than one output in differ-
ent formats will be produced; an audio-video splitter as the most obvious one. The same applies
to the input part; i.e., an extractor may require different inputs to be processed together. In the
end, the assumption of the microservices architecture8, where each extractor is responsible for
only one single element of functionality, may also need to be revised. A new model and broker
design supporting multiple inputs and outputs, extractor parametrization and possibly even several
functionalities within a single component is currently investigated to address these issues.

• The simple MIME type-based system for describing what extractors are able to provide or con-
sume is not enough. It could be extended adding qualifiers to avoid some of the issues detected,
but this would only solve a minor part of the real problem. Our conclusion was that a more sophis-
ticated language to describe the meaning of the exchanged data is required. The core element to
this is a separation of syntactic extractor input and output definitions (provided per extractor) ver-
sus semantic extractor input and output (provided later, on top of syntactic descriptions, thereby

8http://martinfowler.com/articles/microservices.html

24

considering extractor interdependencies as well as content and use case specifics). This is fore-
seen for the next broker version, and will be supported not only by an extension of the extractor
model (see aforementioned points), but also with a dedicated extractor registration and discovery
service.

• It is clear that a more high-level approach to plan and execute jobs will be required, including
limited support for dynamic routing based on computational conditions within extractor work-
flows. There is relevant work in the area of EIP (Enterprise Integration Patterns) that can be
reused for solving this requirement, and we are currently investigating the integration of Apache
Camel into the MICO platform for this purpose. This would be implemented by specific MICO
auxiliary components to support decision-based routing based on information retrieved from the
knowledge base. Moreover, a dedicated workflow planner which is able to support the manual and
semi-automatic creation of workflows (using the aforementioned model and extractor registration
and discovery service) is planned for future platform releases.

• Besides the aforementioned major points, there are several minor issues to be checked, including
status tracking of the jobs, failure tolerance, etc.

25

3 Enabling Technology Models for Cross-media Publishing

Authors: Emanuel Berndl, Andreas Eisenkolb, Thomas Köllmer, Kai Schlegel, Christian Weigel

Multimedia analysis components typically operate in isolation as standalone applications and there-
fore do not consider the context of other analyses of the same media resource. Furthermore, the context
and the analysis results are also present in different proprietary formats, hence not only the lack but also
the interpretation of them poses possible obstacles. As a solution to these issues, we designed a multi-
media metadata model in conjunction with a metadata API. The model will be introduced in Section 3.1,
the decision taking and a description of the API in Section 3.2. Section 3.3 will cover the extensibility
of the model and the API, allowing the model to be adapted for third parties and their extractors.

3.1 Introduction to Multimedia Metadata Model

The main purpose of the MICO multimedia metadata model lies on the semantic combination of differ-
ent multimedia items. As extraction and analysis processes (in general) produce a manifold of different
results and output formats, a unified way of storing and requesting the content is needed. Our model will
combine many different formats and open possibilities for unified querying. Furthermore, the utilisation
on the other hand gets facilitated. Metadata as well as provenance can be persisted in close relation to
the multimedia content. The applied use cases in combination with the vision of the platform generate
different requirements that were posed to the model:

• Cross-Multimedia Application: The platform must be able to process different multimedia for-
mats, such as text, audio, video, or images. Besides this fact, every output of the extractors will
be of different syntactical and semantical format, producing a multitude of different results. All
of this has to be funnelled into one uniform metadata model.

• Different Annotation Targets: Next to the diversity of extraction results, it must also be possible
to express the input of an extractor in a sufficient manner. Additionally, as not every extraction
process is using the full multimedia object, it must also be possible to address only a temporal or
spatial part or fragment of the object.

• Extensibility: The platform will support a baseline of extractors combined with the corresponding
vocabulary for their results. But as the platform is supposed to be used outside our own application
context, the platform as well as the model need to be extensible in order to incorporate new
extractors and their results.

• Provenance: All the aforementioned items need to be backed up with provenance information,
as it is important to refer to the workflows at the level of every result. At all extraction steps, the
executing instance and the timestamp will be stored. The contextual background for extractors
is saved. This is necessary in order to receive a full provenance chain for extraction workflows.
Additionally, versioning as well as the calculation of trust and confidence values is required.

Our model is based on the Resource Description Framework RDF [MM04], which is a common
standard for linking, structuring, merging, and interchanging data. It enables for semantic interlinking
and comprehensive querying through SPARQL [PS08] (see Section 4 for a full description of SPAQRL
and its extension SPARQL-MM). RDF (and its schema RDFS [BG14]) in combination with the ontology
specification given by the Web Annotation Working Group9 WADM (see http://www.w3.org/TR/

9http://www.w3.org/annotation/

26

http://www.w3.org/TR/annotation-model/
http://www.w3.org/TR/annotation-model/
http://www.w3.org/annotation/
http://www.w3.org/TR/annotation-model/

Figure 3 Base concept of an annotation

anno

body target

oa:Annotationrdf:type

oa:hasBody oa:hasTarget

annotation-model/, which is a adopted and extended version of the Open Annotation Data Model
OADM [SCS13]) are the core ontologies used. This process and the other involved ontologies have
been covered in the MICO series of technical reports. Ultimately, a combined ontology for the MICO
use case has been created. The specification can be found at http://mico-project.bitbucket.org/
vocabs/platform/1.0/.

The main workflows implemented by the MICO platform deal with the analysis of media informa-
tion units, in this context called content items, and subsequent publishing of analysis results, either for
search, querying, and recommendations. Outcome is all types of structured metadata about the content
and its context. Content items are the representation of media resources together with their context
in the platform. With context we mean the collection of multiple content parts, typically results of
analysis components with different media types, that are directly related to the main content item. In
other words, a content item is a semantic grouping of information objects (content parts) considering
a specific multimedia asset. In our context, this concept is subsumed under the name composition (see
Figure 5, RDF entities of this type are coloured in green).

The metadata that is created at the very end of every extraction will form an annotation, an entity
that further describes a media item or an intermediary result. These annotations will form the core
of our model and will consecutively be designed in a rich and extensible manner. By adapting those
annotations to the WADM, they can find use in other contexts or use cases outside of the MICO platform.
An annotation consists of three core components: the body, the target, and a generic annotation entity
that joins both of the former entities. Figure 3 shows the basic shape of an annotation. Annotations are
always of the type (rdf:type) oa:Annotation.

The body contains the actual content of the annotation. Every type of extractor in conjunction
with its result will be broken down into RDF triples. Additionally, by supporting an own distinctive
body class for the various extraction results, the bodies (and consecutively the whole annotation) gets
query-able in a straightforward fashion. The target of an annotation specifies what media resource is
the input for the given annotation, and it can be specified that only a subpart of the media item is to be
selected. This selection can be made conform to different existing specifications, for example the W3C
Media Fragments [Tro+12] or an SVG vector [Fer01]. An annotation entity of the type oa:Annotation
connects the body and target via the relationships oa:hasBody and oa:hasTarget respectively. Figure4
shows an example of an annotation. It is focused on the annotation itself, as it is the central point for the
metadata API, following in Section 3.2. Connections to other features of the metadata model are only
indicated. For further information on the composition of the extraction results of a whole workflow,
refer to [MICO2]. The colours of the nodes refer to the modules of the metadata model (annotation in
red, body/content in blue, target/selection in yellow - see Figure 5).

The annotation in Figure 4 is a result of an extractor that runs a face recognition algorithm. There-
fore, its body is typed (rdf:type) as an instance of the class mico:FaceRecognitionBody. The con-
tent of the extraction result contains a name (corresponding to the person that is recognised) and a
confidence value (which reflects how sure the extractor is about its findings). These two parts of the

27

http://www.w3.org/TR/annotation-model/
http://www.w3.org/TR/annotation-model/
http://mico-project.bitbucket.org/vocabs/platform/1.0/
http://mico-project.bitbucket.org/vocabs/platform/1.0/

Figure 4 Annotation example of a facerecognition result

Enhanced selection

Annotation

oa:has
Source

"xywh=
15,190,170,170"

TargetBody

oa:has
Body

oa:has
Target

mico:Face
RecognitionBody

rdf:
type

"Barrack Obama"

0.7

rdf:
value

mico:has
Confidence

Previous
ContentPart

Selector

oa:Fragment
Selector rdf:type

oa:has
Selector

rdf:value

http://www.w3.org/
TR/mediafrags

dcterms:
conforms

To

ContentPart mico:has
Content

oa:Specific
Resource

rdf:type

result are also stored as triples connected to the body node. The relationships are rdf:value and
mico:hasConfidence. The target of the annotation refers to the input for the extraction process. In
this case, the target links to its preceding content part (see [MICO2] for the design of content items and
content parts, and for the implementation of corresponding model features), which itself contains the
picture that the recognition is done on. As the face recognition algorithm also supports the coordinates
of the located face, a link to the sole media item is not enough. An extension to the target can be seen
on the right side of Figure 4. The specified selector (via the relationship oa:hasSelector) of the type
oa:FragmentSelector specifies a rectangle of pixels around the face. This selection is conform to
(dcterms:conformsTo) the W3C Media Fragments specification [Tro+12], and gets its value assigned
via the relationship rdf:value.

In some of the annotations, both the body and/or the target can be ”empty”. An empty body means,
that the extraction result does not have any further input that needs to be triplified. In those cases,
the sole typing of the body has enough significance and allows for querying. An example for such an
annotation would be a face detection. It is sufficient to type the annotation accordingly, the body does
not need further specification, as all the information - where a face is detected - can be supported by an
enhanced selection target.

Ultimately, we created an ontology that fits the MICO purpose and meets the requirements defined
above in a fully satisfying way. With our model, it is possible to support a cross-multimedia platform
with rich context among its results. All types of multimedia items such as text, audio, video, images,
and linked data in combination with its metadata background are available. Additionally, different
proprietary output formats of various extractors are enabled. By specifying selectors for annotations,
the input for an extractor can be defined accurately, subparts of multimedia items can be selected. The
model also allows for extensions, which enables for the addition of extractors into the MICO platform.
This is enabled by the definition of new body/content constructs. New target and selector specifications
can also be implemented. Provenance features for the extractors, agents, and resulting annotations, are
supported in a rich fashion.

28

Figure 5 Modules and general design of the multimedia metadata model

Context
(annotation)

Content
(body)

Selection
(target)

Composition

Provenance

Figure 5 shows the final design of the multimedia metadata model. It has been designed around
five modules. Content, context, and selection refer to body, annotation, and target of the WADM, the
modules for composition has been added for MICO purposes, provenance features are adopted and
extended from the WADM specification.

3.2 Introduction to Metadata Model API

The MICO platform stores and publishes all results of extractors as RDF statements using the previously
explained MICO metadata model. This common data model allows semantic interlinking on the level
of single resources and provides comprehensive querying with SPARQL. At the first glance, the use
of Semantic Technologies like RDF an SPARQL can entail complexity for non-experts, because most
of them are used to relational- or document-oriented persistence approaches. To overcome this issue,
a Data Model API was envisaged to provide an easy entry point for non Semantic Web developers to
persist extractor results and access the content and context of the platform workflows.

3.2.1 Design Decisions

Developers should be able to use a predefined Java/C++ API to create their content, rather than dealing
with triples and SPARQL queries. From a software engineering point of view and the vision of the
MICO platform, which includes a generic and future-proof integration of 3rd party extractors, the API
shouldn’t be limited and tailored to the workflows and extractors of the MICO Use-Case scenarios.
Therefore the API has to be extensible and should allow 3rd parties to easily integrate own extractors
and connect to existing workflows as well as create custom workflows, elevating the platform in a big
scale and connected context.

To offer most flexibility and extensibility, the API adopted to a client-side RDF model generation
(see Figure 6), thereby resting on the standardised SPARQL technology and only behave as a facade
instead of introducing a restricted and proprietary transport format. The model API serves as a utility
module that facilitates the generation of RDF and SPARQL communication.

As a downside, this option would yield an redundant implementation in Java and C++ and conse-
quently requires higher initial development efforts. As a consequence, we decided to mainly focus a
fully functional and extensible Java Model API for 3rd parties and additionally support a lightweight
C++ API for our technical partners, which is based on generic SPARQL templates. Therefore, the next
sections will always refer solely to the Java API.

29

Figure 6 Client-side RDF model generation

C++ - Objects to RDFJAVA - Objects to RDF

MICO
Platform
“Server“

Apache
Marmotta

BLOB
Storage

Extractor
“Client”

Extractor
“Client”RDF

SPARQL

RDF

SPARQL

3.2.2 Technologies

The objective of the model API is to allow easy-to-use generation of RDF statements for non-experts.
Therefore the API is based on the Alibaba10 library, which provides simplified RDF store abstractions
to accelerate development and facilitate application maintenance. This means that developers work with
well-known object-oriented POJOS (Plain Old Java Object) which are automatically mapped to RDF
statements and persisted to our Triple Store (Apache Marmotta11). The utilisation of Java annotations
facilitate maintenance, development and even extensions by 3rd parties (see Section 3.3). Additionally
Alibaba provides a reverse-mapping from RDF to Java objects which will form the cornerstone of a
fluent interface API to access stored data form the MICO triple store without writing SPARQL queries.
Besides Alibaba, several other Java libraries like Empire12, Som(m)er13, jennabean14 were also inves-
tigated. It is noticeable that most libraries are no longer maintained or lack full documentation. A
summary report of the investigation was published as MICO blog post15.

3.2.3 Anno4j

Since our model is based on the Web Annotation Data Model / Open Annotation Data Model we decided
to extract the MICO Model API core to build an independent Open-Source project for general purpose
annotations. As a result the Anno4j project16 was born and can be used as a library to provide program-
matic access for read and write W3C Web Annotation Data Model / W3C Open Annotation Data Model
from and to local/remote SPARQL endpoints. Although Anno4j will be developed independently in the
future, the MICO Model API will be directly based on Anno4j and features will be merged regularly.

10https://bitbucket.org/openrdf/alibaba
11http://marmotta.apache.org/
12https://github.com/mhgrove/Empire/
13https://github.com/bblfish/sommer
14https://code.google.com/p/jenabean/
15http://www.mico-project.eu/selecting-an-rdf-mapping-library-for-cross-media-enhancements/
16https://github.com/anno4j/anno4j

30

https://bitbucket.org/openrdf/alibaba
http://marmotta.apache.org/
https://github.com/mhgrove/Empire/
https://github.com/bblfish/sommer
https://code.google.com/p/jenabean/
http://www.mico-project.eu/selecting-an-rdf-mapping-library-for-cross-media-enhancements/
https://github.com/anno4j/anno4j

Detailed information about Anno4j, and therefore about the implementation of the MICO Model API,
can be seen directly on the GitHub page of the project at https://github.com/anno4j/anno4j.

3.2.4 API Overview

The following section gives an overview over the MICO API and how to use it. It can be used for extrac-
tor services to create metadata about analysis results. The amendments extend in particular the already
available MICO Persistence API which is responsible for creating, accessing, and updating content items
and content parts. Basically, the Content class was enriched with the method createAnnotation to
create and persist model annotations. The overloaded method createAnnotation can be called with
up to four parameters, where the first three parameters are mandatory:

1. An implementation of a (com.github.anno4j.model) Body object containing the actual body con-
tent of the annotation

2. An instance of the parent (eu.mico.platform.persistence.model) Content object to model the tar-
get of the annotation

3. An instance of a (eu.mico.platform.persistence.metadata) MICOProvenance object containing
provenance information about the extractor service

4. (optional) A implementation of a (com.github.anno4j.model) Selector object describing a more
detailed selection of the annotation

After invoking the createAnnotation method the ContentPart itself creates the model annotation,
generates a corresponding SPARQL update query, and automatically writes the result to the MICO
triple store. The current model API includes a set of predefined implementations for Body, Selection
and Provenance components, regarding the identified extractor services in specification D3.2.1. These
implementation are bundled in the packages eu.mico.platform.persistence.impl.BodyImpl,
eu.mico.platform.persistence.impl.SelectorImpl and com.github.anno4j.model.impl and
contain for example implementations like AVQBody, FaceDetectionBody, FaceRecognitionBody,
LowLevelFeatureBody, FragmentSelector or SVGSelector. Listing 1 shows an overall example
how to create a face recognition annotation using predefined Java classes and automatically generate
and persist an annotation model using the just introduced Model API.

Listing 1: Creating a new model annotation in a extractor service

1 // Create Body for a recognised face with a confidence value
2 FaceRecognitionBody body = new FaceRecognitionBody(”Barrack Obama”, 0.7);
3

4 // Specifying the coordinates of the detected face (xCor,yCor, width, height)
5 FragmentSelection selection = new FragmentSelection(15, 190, 170, 170);
6

7 // Provenance information about the extractor itself
8 MICOProvenance prov = new MICOProvenance();
9 prov.setExtractorName(”http://www.mico−project.eu/extractors/FaceRecExtractor”);

10 prov.setRequires(”text/xml”);
11 prov.setProvides(”application/rdf−model”);
12

13

31

https://github.com/anno4j/anno4j

14 // Create a new content part for the analysis result and create a new annotation with all
components

15 Content cp = contentItem.createContentPart();
16 cp.createAnnotation(body, parentContentPart, prov, selection);

3.3 Extending Metadata Model API

The presented multimedia metadata model in combination with the API allows developers of multimedia
extractors to easily connect them to a given MICO platform. This enables the results to be included into
a contextual background, integrating the process into given workflows allows for even more flexible and
rich outcomes. The utilisation of the API is designed in an easy-to-use manner. When integrating a
new extractor, the developer does not have to deal with any RDF, SPARQL, composition, or provenance
details. Considering Figure 5, ”only” the content module and the selection module (to a small degree)
has to be extended by the extractor owner. An own body type, complemented with its specific attributes
and values, has to be defined. When the input multimedia item is taken in its entirety, the target does not
have to be altered. Otherwise, the simple addition of a selector uses a subpart of the multimedia item.

In the following, a step by step example will guide through the process of implementing the neces-
sary steps to extend an extractor to work with the platform. Therefore the RDF graph from Figure 4 will
be used as example. An important AliBaba feature is worth noting: It is necessary to provide an empty
’’META-INF/org.openrdf.concepts’’ in the root directory (or JAR) of the annotated classes to be
able to persist the data. If this file does not exists the API will throw an exception, telling you to create
this file.

3.3.1 Step 1: Creating the POJOs

In the first step we want to create the particular Java classes, for the FaceRecognitionBody and the
FragmentSelector. At the beginning we create an ordinary Java object (POJO) for the Body as shown
in Listing 2. Comparing the given code with the example graph, it can be seen, that the FaceRecog-
nitionBody class defines a String value for the recognised person (line 6) and a Double value for the
confidence (line 11), according to the RDF graph from Figure 4. In line 13 we generated the default
constructor. This is not important for persisting the class, but if we want to query the objects later on,
AliBaba needs the default constructor to automatically map the queried triples to a specific object. Be-
sides the FaceRecognitionBody a POJO for the FragmentSelector is required for the given example, as
shown in Listing 3.

Listing 2: POJO - FaceRecognitionBody

1 public class FaceRecognitionBody {
2

3 /∗∗
4 ∗ The name of the person that was detected
5 ∗/
6 private String detection;
7

8 /∗∗
9 ∗ Confidence value for the detected face

10 ∗/
11 private Double confidence;
12

32

13 public FaceRecognitionBody() {
14 }
15

16 public FaceRecognitionBody(String detection, Double confidence) {
17 this.detection = detection;
18 this.confidence = confidence;
19 }
20

21 public String getDetection() {
22 return detection;
23 }
24

25 public void setDetection(String detection) {
26 this.detection = detection;
27 }
28

29 public Double getConfidence() {
30 return confidence;
31 }
32

33 public void setConfidence(Double confidence) {
34 this.confidence = confidence;
35 }
36 }

Listing 3: Listing 2: POJO - FragmentSelector

1 public class FragmentSelector {
2

3 // The x−coordinate of the fragment
4 private int xCoord;
5

6 // The y−coordinate of the fragment
7 private int yCoord;
8

9 // The width of the fragment
10 private int width;
11

12 // The height of the fragment
13 private int height;
14

15 // String representation of the x−coordinate, the y−coordinate, the width and the height
16 private String fragmentData;
17

18 private final String CONFORMS TO = ”http://www.w3.org/TR/mediafrags”;
19

20 public FragmentSelector() {
21 }
22

23 public FragmentSelector(int xCoord, int yCoord, int width, int height) {
24 this.xCoord = xCoord;

33

25 this.yCoord = yCoord;
26 this.width = width;
27 this.height = height;
28 this.fragmentData =
29 ”xywh=” + String.valueOf(xCoord) + ”,” +
30 String.valueOf(yCoord) + ”,” +
31 String.valueOf(width) + ”,” +
32 String.valueOf(height);
33 }
34

35 /∗∗
36 ∗ Getter for the String representation of the x−coordinate,
37 ∗ the y−coordinate, the width and the height in the form:
38 ∗ <p/>
39 ∗ ”x−coordinate, y−coordinate, width, height”
40 ∗
41 ∗@return
42 ∗/
43 public String getFragmentData() {
44 return fragmentData;
45 }
46

47 // Some setter and getter...
48 }

3.3.2 Step 2: Annotating the created POJOs

The next step is to take the FaceRecognitionBody from Listing 2 and annotate it using the @Iri anno-
tation which is provided by AliBaba. Therefore, all we have to do is to add this annotation to all class
tags and fields that should be stored in the repository. Considering the example from Figure 4, the first
thing we have to specify is the triple for the rdf:typef of the body:

<http://mico-project.eu/exampleBody> rdf:type mico:FaceRecognitionBody

Assigning the type to the object is rather simple, all we have to do is to add the @Iri annotation
with the type String directly above the class tag, as shown in Listing 4 (line 1). In line 7 and line 13,
the other two triples (<http://mico-project.eu/exampleBody> rdf:value "some person",
<http://mico-project.eu/exampleBody> mico:hasConfidence some confidence value) are
annotated by using the annotation and the respective String values for the predicates.

Another noticeable thing is the fact, that the FaceRecognitionBody extends the abstract class
(com.github.anno4j.model) Body. There is also a corresponding abstract class for selections called
(com.github.anno4j.model) textttSelector. Extending the particular classes with these abstract classes
prevents AliBaba to treat these objects as blank nodes when persisting.

Listing 4: Annotated FaceRecognitionBody

1 @Iri(Ontology.FACE RECOGNITION BODY MICO)
2 public class FaceRecognitionBody extends Body {
3

4 /∗∗

34

5 ∗ The name of the person that was detected
6 ∗/
7 @Iri(Ontology.VALUE RDF)
8 private String detection;
9

10 /∗∗
11 ∗ Confidence value for the detected face
12 ∗/
13 @Iri(Ontology.HAS CONFIDENCE MICO)
14 private Double confidence;
15

16 public FaceRecognitionBody() {
17 }
18

19 public FaceRecognitionBody(String detection, Double confidence) {
20 this.detection = detection;
21 this.confidence = confidence;
22 }
23 ...
24 }

Listing 5: Annotated FragmentSelector

1 @Iri(Ontology.FRAGMENT SELECTOR OA)
2 public class FragmentSelector extends Selector {
3

4 // The x−coordinate of the fragment
5 private int xCoord;
6

7 // The y−coordinate of the fragment
8 private int yCoord;
9

10 // The width of the fragment
11 private int width;
12

13 // The height of the fragment
14 private int height;
15

16 // String representation of the x−coordinate, ...
17 @Iri(Ontology.VALUE RDF)
18 private String fragmentData;
19

20 @Iri(Ontology.CONFORMS TO DCTERMS)
21 private final String CONFORMS TO = ”http://www.w3.org/TR/mediafrags”;
22

23 public FragmentSelector() {
24 }
25 ...
26 }

35

3.3.3 Step 3: Creating the Annotation object

In the third and last step we want to use use the annotated FaceRecognitionBody and the FragmentS-
elector object to create an Annotation object, using the MICO Metadata Model API. Listing 1 shows
how a possible implementation can look like. First of all, we create new instances of these two objects
and fill them with the data from Figure 4 (line 2 and 5). After that, we create a Provenance object with
some example values, like the required input format or the name of the extractor as URL (line 8 - 11).
Immediately afterwards, we create a new Content object by invoking the createContentPart function
of the contentItem. Now we can call the createAnnotation function. This method will automatically
create the Annotation object and its triples. In addition, the createAnnotation function will also write
the Annotation object to the underlying triple store. An example, how to use this function is shown in
Listing 1.

As mentioned, executing the createAnnotation function will result in persisting the Annotation
object and its components. The actual RDF statements, which are persisted on the MICO triple store,
are presented in Figure 4 and are conform to the described MICO Metadata Model from subsection 3.1.
Listing 6 shows how this result would look like using the Turtle syntax.

Listing 6: Example Annotation object using the Turtle syntax

1 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
2 PREFIX mico: <http://www.mico−project.eu/ns/platform/1.0/schema#>
3 PREFIX oa: <http://www.w3.org/ns/oa#>
4 PREFIX dcterms : <http://purl.org/dc/terms/>
5

6 <http://www.mico−project.eu/exampleAnnotation>
7 rdf:type <http://www.w3.org/ns/oa#Annotation> ;
8 <http://www.w3.org/ns/oa#annotatedAt> ”2015−06−03 09:52:28.65” ;
9 <http://www.w3.org/ns/oa#hasBody> <http://www.mico−project.eu/exampleBody> ;

10 <http://www.w3.org/ns/oa#hasTarget> <http://www.mico−project.eu/exampleTarget> ;
11 <http://www.w3.org/ns/oa#annotatedBy>

<http://www.mico−project.eu/exampleProvenance> .
12

13 <http://www.mico−project.eu/exampleBody>
14 rdf:type mico:FaceRecognitionBody ;
15 rdf:value ”Barrack Obama”;
16 mico:hasConfidence ”0.7”ˆˆxsd:double .
17

18 <http://www.mico−project.eu/exampleTarget>
19 rdf:type <http://www.w3.org/ns/oa#SpecificResource> ;
20 <http://www.w3.org/ns/oa#hasSource>

<http://www.mico−project.eu/exampleContentItem> ;
21 oa:hasSelector <http://www.mico−project.eu/exampleSelector> .
22

23 <http://www.mico−project.eu/exampleSelector>
24 rdf:type oa:FragmentSelector ;
25 dcterms:conformsTo <http://www.w3.org/TR/mediafrags> ;
26 oa:hasSource ”xywh=15,190,170,170” .
27

28 <http://www.mico−project.eu/exampleProvenance>
29 rdf:type <http://www.w3.org/ns/prov/SoftwareAgent> ;
30 foaf:name <http://www.mico−project.eu/extractors/FaceRecExtractor> ;

36

31 mico:provides ”application/rdf−model” ;
32 mico:requires ”text/xml” .

37

4 Enabling Technology Models for Cross-media Querying

Authors: Thomas Kurz

With the introduction of the complex annotation model both annotators and humans can put media
and concepts in context. The model represents information using RDF, which makes SPARQL a good
candidate for an adequate retrieval mechanism and query language. Nevertheless some functionalities
that are necessary for proper media asset and fragment retrieval are missing, like described in [MICO2].
In this chapter we give an introduction to the Multimedia Extension for SPARQL named SPARQL-MM.
The extension includes mainly relation and aggregation functions for media fragments but is under
continuous development so this description is just a snapshot of the current version. An up-to-date
information of all functions and it’s underlying logic can be found on http://github.com/tkurz/
sparql-mm.
Before we introduce SPARQL-MM we give an overview on the SPARQL 1.1 specification [HS13] in a
very basic tutorial in Section 4.1. In Section 4.2 we give an overview on all the functions, which is just
a wrap up of the all functions specified in [MICO2]. Furthermore we provide a hands-on on Section 4.3
where we introduce the SPARQL query interface Squebi as well as a complex example query.

4.1 Introduction to SPARQL

As the standard mentions “RDF is a directed, labeled graph data format for representing information in
the Web. RDF is often used to represent, among other things, personal information, social networks,
metadata about digital artifacts, as well as to provide a means of integration over disparate sources of
information.This [The SPARQL, editor’s note] specification defines the syntax and semantics of the
SPARQL query language for RDF. The SPARQL query language for RDF is designed to meet the use
cases and requirements identified by the RDF Data Access Working Group.” [HS13]. In this part we
introduce SPARQL as a query language for RDF and do not consider their data manipulation functions
that has been introduces in the newest standard version. Under this conditions, a SPARQL query can be
separated in the several construction parts, that are already outlined in [MICO2]:

PREFIX Prefixes allow to shorten URLs. They are optionally defined on the top of a SPARQL query.

PROJECTION This block represents the projection part of the language. SPARQL allows 4 different
kind of projection: SELECT, CONSTRUCT, DESCRIBE, and ASK.

DATASET This block allows to specify the context(s) in which the query is evaluated.

SELECTION This block (WHERE) may contain triple patterns, optional clauses, existence checks
and filters.

LIST OPS This block allows result ordering (ORDER BY) and segmentation (OFFSET,LIMIT).

AGGREGATION This block allows result aggregation (GROUP BY, HAVING).

The type of result of a SPARQL query depends on the projection type. In case of a SELECT (by far the
mostly used type) it is a table, whereby every projected variable relates to one column. The set of all
rows is the set of all possible bindings that fulfill the query. If the projection is of type CONSTRUCT
or DESCRIBE, the result is RDF. In case of ASK the result is a boolean value, that is true, if at query
has at least one binding, false otherwise.
In the following part we give examples for almost all constructs and describe their function based on a
simple test example:

38

http://github.com/tkurz/sparql-mm
http://github.com/tkurz/sparql-mm

1 @prefix mxo: <http://mico−project.org/sparqlmm/examples/onthology/> .
2 @prefix mxd: <http://mico−project.org/sparqlmm/examples/resource/> .
3 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
4 @prefix schema: <http://schema.org/> .
5 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
6 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
7

8 mxo:Lion a rdf:Class ;
9 rdfs:label ”Lion”@en, ”Löwe”@de .

10

11 mxd:Simba a mxo:Lion ;
12 schema:name ”Simba” ;
13 mxo:sex mxo:Male .
14

15 mxd:Scar a mxo:Lion ;
16 schema:name ”Scar” ;
17 mxo:sex mxo:Male .
18

19 mxd:Mufasa a mxo:Lion ;
20 schema:name ”Mufasa” ;
21 mxo:sex mxo:Male ;
22 mxo:has partner mxd:Sarabi .
23

24 mxd:Nala a mxo:Lion ;
25 schema:name ”Nala” ;
26 mxo:sex mxo:Female .
27

28 mxd:Sarabi a mxo:Lion ;
29 schema:name ”Sarabi” ;
30 mxo:sex mxo:Female ;
31 mxo:has partner mxd:Mufasa .

The graph (expressed with TURTLE17 syntax) contains the description and relation of animals using
two different ontologies. The tutorial is inspired by the Jena basic SPARQL tutorial. 18

Query 1: Find any instance of a lion

This is a very basic query where we want to return anything that has the relation rdf:type ex:Lion.
Like in TURTLE a type test can also be short-cutted by using the keyword a, so both listed queries
return the same result. In the evaluation process the variables in the query are bound so the result (list)
is the cross product of all possible bindings.

1 PREFIX mxo: <http://mico−project.org/sparqlmm/examples/onthology/>
2 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
3

4 SELECT ?lion WHERE {
5 ?lion rdf:type mxo:Lion .
6 }

17http://www.w3.org/TR/turtle/
18https://jena.apache.org/tutorials/sparql.html

39

http://www.w3.org/TR/turtle/
https://jena.apache.org/tutorials/sparql.html

7

8 SELECT ?lion WHERE {
9 ?lion a mxo:Lion .

10 }
11

12 ==========
13 ?lion
14 −−−−−−−−−−
15 mxd:Simba
16 mxd:Scar
17 mxd:Mufasa
18 mxd:Nala
19 mxd:Sarabi

It has to be mentioned, that prefixes has to be defined vor every SPARQL query. You can look up all the
used prefixes (and more) under http://prefix.cc/ which is also used by the Squebi Autocompletion.

Query 2: Select all lion names

In this query we combine two triple patterns that are bound together via variable ?x. If two patterns
starts with the same variable of resource they can be combined (like in TURTLE syntax), so again both
queries deliver the same result.

1 PREFIX mxo: <http://mico−project.org/sparqlmm/examples/onthology/>
2 PREFIX schema: <http://schema.org/>
3

4 SELECT ?name WHERE {
5 ?x a mxo:Lion .
6 ?x schema:name ?name .
7 }
8

9 SELECT ?name WHERE {
10 ?x a mxo:Lion ;
11 schema:name ?name .
12 }
13

14 ==========
15 ?name
16 −−−−−−−−−−
17 ”Simba”
18 ”Scar”
19 ”Mufasa”
20 ”Nala”
21 ”Sarabi”

Query 3: List all lions that have a name starting with S (upper or lower case)

For this query we use a regular expression filter. Filters in SPARQL start with the keyword FILTER and
are used for testing, which means that they are evaluated to a boolean value. Standard SPARQL supports
many filter operations like boolean and mathematical functions, comparison methods, type testing (e.g.

40

http://prefix.cc/

isURI), accessors for literals (e.g. lang) and functions (e.g. regex). An exhausting description of all
filters can be found in the standard. Filter functions build one of the extension points for SPARQL (that
is used by SPARQL-MM). The regex function from the example is defined as regex(value v,string
p, string f), whereby v is the value to test, p is the regex pattern and f is a flag (that e.g. allows to
filter in-case-sensitive).

1 PREFIX mxo: <http://mico−project.org/sparqlmm/examples/onthology/>
2 PREFIX schema: <http://schema.org/>
3

4 SELECT ?lion WHERE {
5 ?lion a mxo:Lion ;
6 schema:name ?name .
7 FILTER regex(?name, ”ˆs”, ”i”)
8 }
9

10 ==========
11 ?lion
12 −−−−−−−−−−
13 mxd:Simba
14 mxd:Scar
15 mxd:Sarabi

Query 4: Find the german label of the species Simba belongs to

For this query we use a SPARQL FILTER, too. To access the language value of the literal we use an
accessor function lang(literal). The language similarity function langMatches(value,string)
is used to compare language strings. This function is should be used for language testing because in
comparison to simple string equals (=) it is robust against language type facets like e.g. ”de-by”, ”en-au”,
etc.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
2 PREFIX mxd: <http://mico−project.org/sparqlmm/examples/resource/>
3

4 SELECT ?label WHERE {
5 mxd:Simba a ?type .
6 ?type rdfs:label ?label .
7 FILTER langMatches(lang(?label), ”de”)
8 }
9

10 ==========
11 ?label
12 −−−−−−−−−−
13 ”Löwe”

Query 5: Find all lionesses and optionally their partner

For this query we use an OPTIONAL clause. It is embedded within the WHERE clause and allows
optional bindings (bindings that can be empty in the result set). In OPTIONAL clauses any combination
of statements (like Triple Patterns, Filters, Existence checks, etc.) that is allowed within a WHERE
clause is accepted. It is also possible to use more the one OPTIONAL block within one WHERE clause.

41

1 PREFIX mxo: <http://mico−project.org/sparqlmm/examples/onthology/>
2

3 SELECT ?lioness ?partner WHERE {
4 ?lioness a mxo:Lion ;
5 mxo:sex mxo:Female .
6 OPTIONAL {
7 ?lioness mxo:has partner ?partner .
8 }
9 }

10

11 ======================
12 ?lioness | ?partner
13 −−−−−−−−−−−−−−−−−−−−−−
14 mxd:Nala |
15 mxd:Narabi | mxd:Mufasa

Query 6: Return all lions ordered ascending by sex and descending by name

Ordering in SPARQL can be done by using an the ORDER BY block. For ordering it is possible to use
variable values that are defined but not necessarily bound in the SELECT block. The default comparison
operator in SPARQL is based on ascending string ordering. Additionally to variables SPARQL also
allows to use functions in the ORDER BY clause.

1 PREFIX mxo: <http://mico−project.org/sparqlmm/examples/onthology/>
2 PREFIX schema: <http://schema.org/>
3

4 SELECT ?lion WHERE {
5 ?lion a mxo:Lion ;
6 mxo:sex ?sex ;
7 schema:name ?name .
8 }
9 ORDER BY ASC(?sex) DESC(?name)

10

11 ==========
12 ?lion
13 −−−−−−−−−−
14 mxd:Sarabi
15 mxd:Nala
16 mxd:Simba
17 mxd:Scar
18 mxd:Mufasa

It is obvious that SPARQL provides a much broader functionality (e.g. EXISTS operator, property
paths, etc.) that we will not introduce here for the matter of simplicity. For further reading we suggest
the tutorial of the W3C working group SPARQL by example 19 and the official W3C recommendation20.

19http://www.cambridgesemantics.com/semantic-university/sparql-by-example
20http://www.w3.org/TR/sparql11-query/

42

http://www.cambridgesemantics.com/semantic-university/sparql-by-example
http://www.w3.org/TR/sparql11-query/

4.2 Introduction to SPARQL-MM

In this section we describe the current state of SPARQL-MM (version 1.0) including spatio-temporal
accessor, relation and aggregation functions. SPARQL-MM has been presented to the scientific com-
munity within the Linked Media workshop at the World Wide Web Conference 2015 [KSK15]. To get a
better understanding we give an example of a SPARQL-MM query in the next section and recommend
the presentation slides of the workshop21. Currently SPARQL-MM supports MediaFragments and Me-
diaFragmentURIs to identify spatio-regional fragments. In further versions we will extend it to SVG
Selectors and/or to an extended version of Media Fragment URIs, which is currently under discussion
in the W3C working group 22.
The SPARQL-MM function set follows the specifications in D4.2.1-SPEC (Table 3). The base
URI for the SPARQL-MM vocabulary is http://linkedmultimedia.org/sparql-mm/ns/1.0.0/
function#. When abbreviating terms the suggested prefix is mm. Each function in this function set
has a URI constructed by appending a term name to the vocabulary URI. For example: http://
linkedmultimedia.org/sparql-mm/ns/1.0.0/function#getBoxArea. There are machine read-
able function description using SPARQL Extension Description Vocabulary23 e.g. in RDF/XML24. In
this section we give only a very short, human readable description of all functions. A theoretical foun-
dation can be found in [MICO2].

Spatial Relations

Name mm:intersects
Properties SpatialEntity, SpatialEntity
Description returns true if p1 has at least one common point with p2, else false.

Name mm:within
Properties SpatialEntity, SpatialEntity
Description returns true if p1.shape contains all points of p2.shape an p1.shape.edge

has not point in common with p2.shape.edge, else false.

Name mm:above
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is above p2 (based on model m), else false.

Name mm:below
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is below p2 (based on model m), else false.

Name mm:coveredBy
Properties SpatialEntity, SpatialEntity
Description is the inverse function to covers.

21http://slideshare.net/thkurz1/www2015-lime-sparqlmm
22https://lists.w3.org/Archives/Public/public-media-fragment/2015May/0003.html
23http://www.ldodds.com/schemas/sparql-extension-description/
24https://raw.githubusercontent.com/tkurz/sparql-mm/master/ns/1.0.0/function/index.rdf

43

http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#
http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#
http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#getBoxArea
http://linkedmultimedia.org/sparql-mm/ns/1.0.0/function#getBoxArea
http://slideshare.net/thkurz1/www2015-lime-sparqlmm
https://lists.w3.org/Archives/Public/public-media-fragment/2015May/0003.html
http://www.ldodds.com/schemas/sparql-extension-description/
https://raw.githubusercontent.com/tkurz/sparql-mm/master/ns/1.0.0/function/index.rdf

Name mm:covers
Properties SpatialEntity, SpatialEntity
Description returns true if all points of p1.shape are points of p2.shape, else false.

Name mm:crosses
Properties SpatialEntity, SpatialEntity
Description returns true if p1.shape and p2.shape have common points and

p1.shape.edge and p2.shape.edge has common points, else false.

Name mm:leftAbove
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is left above p2 (based on model m), else false.

Name mm:leftBelow
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is left below p2 (based on model m), else false.

Name mm:leftBeside
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is left beside p2 (based on model m), else false.

Name mm:rightAbove
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is right above p2 (based on model m), else false.

Name mm:rightBelow
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is right below p2 (based on model m), else false.

Name mm:rightBeside
Properties SpatialEntity, SpatialEntity
Description returns true p1 if is right beside p2 (based on model m), else false.

Name mm:spatialContains
Properties SpatialEntity, SpatialEntity
Description returns true if p1.shape contains p2.shape

Name mm:spatialDisjoint
Properties SpatialEntity, SpatialEntity
Description returns true is p1.shape has no common points with p2.shape, else false.

Name mm:spatialEquals
Properties SpatialEntity, SpatialEntity
Description returns true if p1.shape == p2.shape, else false.

Name mm:crosses
Properties SpatialEntity, SpatialEntity
Description returns true if p1.shape and p2.shape have common points, else false.

44

Name mm:touches
Properties SpatialEntity, SpatialEntity
Description returns true if p1.shape.edge has at least one common point with

p2.shape.edge and p1.shape.interior has no common point with
p2.shape.interior, else false.

Spatial Aggregations

Name mm:spatialBoundingBox
Properties SpatialEntity, SpatialEntity
Description returns new MediaFragment / MediaFragmentURI with spatial frag-

ment out of existing resources p1 and p2, so that x = min(p1.x, p2.x
) and y = min(p1.y, p2.y) and w = max(p1.x + p1.w, p2.x + p2.w) and
h = max(p1.y + p1.h, p2.y + p2.h).

Name mm:spatialIntersection
Properties SpatialEntity, SpatialEntity
Description returns new MediaFragment / MediaFragmentURI with spatial frag-

ment out of existing resources p1 and p2, so that x = max(p1.x, p2.x
) and y = max(p1.y, p2.y) and w = min(p1.x + p1.w, p2.x + p2.w) -
max(p1.x, p2.x) and h = min(p1.y + p1.h, p2.y + p2.h) - max(p1.y,
p1.x)

Spatial Accessors

Name mm:getBoxArea
Properties SpatialEntity
Description returns the area of BoundingBox of a shape, null if there is none.

Name mm:getBoxHeight
Properties SpatialEntity
Description returns the height of a shape, null if there is none.

Name mm:isSpatialFragment
Properties SpatialEntity
Description returns true is value is a spatial fragment.

Name mm:getBoxWidth
Properties SpatialEntity
Description returns the width of a shape, null if there is none.

45

Temporal Relations

Name mm:overlappedBy
Properties TemporalEntity, TemporalEntity
Description is the inverse function of overlaps.

Name mm:overlaps
Properties TemporalEntity, TemporalEntity
Description returns true if p1.start ¡ p2.start ¡ p1.end ¡ p2.end or p2.start ¡ p.start ¡

p.end ¡ p.end, else false.

Name mm:precedes
Properties TemporalEntity, TemporalEntity
Description returns true if p1.end ¡ p2.start, else false.

Name mm:after
Properties TemporalEntity, TemporalEntity
Description returns *true* if resource1.start ¿= resource2.end, else *false*.

Name mm:contains
Properties TemporalEntity, TemporalEntity
Description returns true if p1.start ¡ p2.start and p1.end ¿ p2.end, else false.

Name mm:during
Properties TemporalEntity, TemporalEntity
Description inverse function of contains.

Name mm:equals
Properties TemporalEntity, TemporalEntity
Description returns true if p1.start == p2.start and p1.end == p2.end, else false.

Name mm:finishedBy
Properties TemporalEntity, TemporalEntity
Description is the inverse function of finishes.

Name mm:finishes
Properties TemporalEntity, TemporalEntity
Description returns true if p1.end == p2.end and p1.start ¿ p1.start , else false.

Name mm:temporalMeets
Properties TemporalEntity, TemporalEntity
Description returns true if resource1.start = resource2.end or resource1.end = re-

source2.start, else false.

Name mm:metBy
Properties TemporalEntity, TemporalEntity
Description is the inverse function of meets.

46

Name mm:startedBy
Properties TemporalEntity, TemporalEntity
Description is the inverse function of starts.

Name mm:starts
Properties TemporalEntity, TemporalEntity
Description returns true if p1.start == p2.start and p1.end ¡ p2.end , else false.

Temporal Aggregations

Name mm:temporalBoundingBox
Properties TemporalEntity, TemporalEntity
Description returns new MediaFragment / MediaFragmentURI with temporal frag-

ment (Min(p1.start, p2.start), Max(p1.end, p2.end)).

Name mm:temporalIntermediate
Properties TemporalEntity, TemporalEntity
Description returns new MediaFragment / MediaFragmentURI with temporal frag-

ment (Min(p1.end, p2.end), Max(p1.start, p2.start)) if intersection
not exists, else null.

Name mm:temporalIntersection
Properties TemporalEntity, TemporalEntity
Description returns new MediaFragmentURI with temporal fragment (Max(re-

source1.start, resource2.start), Min(resource1.end, resource2.end))
if intersection exists, else null.

Temporal Accessors

Name mm:getDuration
Properties TemporalEntity
Description returns the duration of an interval, null if there is none.

Name mm:getEnd
Properties TemporalEntity
Description returns the end of an interval, null if there is none.

Name mm:getStart
Properties TemporalEntity
Description returns the start of an interval, null if there is none.

Name mm:isTemporalFragment
Properties TemporalEntity
Description returns true is value is a temporal fragment.

47

Combined Aggregations

Name mm:boundingBox
Properties SpatialTemporalEntity, SpatialTemporalEntity
Description returns new MediaFragment / MediaFragmentURI with spatial and tem-

poral fragment. It it works like spatialFunction:boundingBox, tempo-
ralFunction:boundingBox or both together.

Name mm:intersection
Properties SpatialTemporalEntity, SpatialTemporalEntity
Description returns new MediaFragment / MediaFragmentURI with spatial and tem-

poral fragment. It works like spatialFunction:boundingBox, temporal-
Function:intersection and both.

Other Accessors

Name mm:isMediaFragment
Properties URI
Description returns if value is a MediaFragment

Name mm:isMediaFragmentURI
Properties URI
Description returns if value is a MediaFragmentURI

SPARQL-MM 1.0 is implemented as Sesame25 function set and can be dynamically integrated in any
existing Sesame triplestore via Java Class Loader. The release is available on Maven Central and thus
can be used as Maven dependency.

1 <dependency>
2 <groupId>com.github.tkurz</groupId>
3 <artifactId>sparql−mm</artifactId>
4 <version>1.0</version>
5 </dependency>

4.3 Sparql-MM in Action

In this section we give an overview, how SPARQL-MM can be used for Media Fragment Retrieval. As
example we use a an annotation set for the movie ”Lion King” that has been persisted using the MICO
Annotation Schema described in Section 3. To make it more convenient for the user to query and display
results we also introduce the SPARQL Editor Squebi [Kur14b].

Squebi - a flexible SPARQL Editor

Squebi is a SPARQL editor and SPARQL result visualizer. It is very flexible and can be adapted to
specific use cases very easy. The feature set include:

25http://rdf4j.org/

48

http://rdf4j.org/

Figure 7 Squebi SPARQL Editor

• customization of SPARQL result visualization

• support for SPARQL 1.1 (update and select)

• bookmarkable uris that define queries and the visualization type

• support for SPARQL query editing (URIs, ontologies and prefixes)

• fast backend switch (quite useful for demo)

• nice GUI

Figure 7 shows a screenshot of the application. The input fields supports prefix, type and property
autocompletion for private and public ontologies. In combination with the color highlight it flats the
learning curve for SPARQL query construction and helps to prevent mistakes. As outlined in the figure,
Squebi allows various views on query results, starting from simple tables up to very use cases specific
visualizations like charts or media player. Squebi is integrated in several software systems like Apache
Marmotta and the MICO platform. For more information we recommend to have a look at the project
description on https://github.com/tkurz/squebi.

Hands-On - Find the lions

We extend the example from Section 4.1 with certain media assets and fragments, so that parts of the
”Lion King” video are linked to animals and concepts. As example we want to formalize the natural
language query:

49

https://github.com/tkurz/squebi

”Find scenes where Simba is left beside his father during the Lion King opening scene
ordered by length.”

The following SPARQL query shows, how we can use SPARQL-MM together with other SPARQL
functionalities to fulfill the request.

1 SELECT ?result WHERE {
2 ?a3 oa:hasBody ?scene;
3 oa:hasTarget ?s3.
4 ?scene a movie:Scene;
5 schema:summary ?description.
6

7 FILTER regex(str (?description), ”opening scene”,”i”)
8

9 ?a2 oa:hasBody :Simba;
10 oa:hasTarget ?s2.
11 ?a1 oa:hasBody ?p1;
12 oa:hasTarget ?s1.
13 ?p1 :father of :Simba.
14

15 FILTER mm:leftBeside(?s2,?s1)
16

17 FILTER mm:intersects(?s3,?s2)
18

19 BIND (mm:boundingBox(?s1,?s2) AS ?result)
20

21 } ORDER BY DESC(mm:duration(?result))

Lines 2-7 define that there has to be a scene with description that includes the string opening scene.
Lines 9-13 define the resources Simba and Simbas father. Line 15 filters all resources where Simba
is left beside his father. Line 17 filters all resources where Simba appears at the same time like the
resource annotated with ”opening scene”. In line 19 we construct a spatio-temporal bounding box with
Simba and his father. Line 21 uses the ORDER BY block to get the longest scenes first. And in line 1
we project the bounding box with the result.

In this chapter we described the current State of SPARQL-MM implementation. As mentioned,
the work is constantly aligned to discussions within the scientific community, which form the following
focus of the next months:

• Improve performance by implementing SPARQL-MM on a deeper Layer (Database)

• Extend Media Fragments (within the W3C Media Fragment working group) to more complex
shapes (including moving objects)

• Extend SPARQL to graph based similarity functions

50

5 Enabling Technology Models for Cross-media Recommenda-
tions

Authors: Patrick Aichroth, Jakob Frank, Thomas Köllmer

Recommender systems have changed the way people find information. Based on behaviour patterns
and content analysis, items can be presented to the users that might be completely new to them, but
match their expectations. Within MICO, the goal and opportunity is to use various metadata types, and
apply recommendation algorithms to further enrich and extend metadata, creating richer models which
can be used for various recommendation purposes.

The two MICO showcases have fairly different requirements with respect to recommendation: The
first showcase, News Media, will require the recommendation of similar content, e.g. based on the
similarity of topics, and content features. The second showcase, Snapshot Serengeti is mostly requiring
use of past user interactions and classification accuracy scores, and extracted metadata, to provide an
personalized, optimized mix of classification tasks to promote user involvement and engagement.

The underlying common theme of both showcases, however, is the need for cross-media recommen-
dation: Automatic and manual annotations, contextual information and user interaction data related to
various media types can be used as input to the algorithms, resulting in recommendations for all relevant
media types as output, thereby crossing media borders. For instance, a user preference for images with
lions (which may have been identified by automatic image analysis or manual annotation, and usage
information) can be used to recommend related images, documents, posts, videos or video fragments.
Consequently, one of the key challenges for this domain is to define which and how to use information
sources to calculate similarity as needed for a specific use case.

5.1 Recommendation architecture and technologies

The technology behind recommender systems has evolved over the past 20 years into a rich collection of
tools that enable the practitioner or researcher to develop effective recommender systems. These systems
use different kinds of information in order to try to build specific models useful for the respective task.

Regarding recommendation technologies in MICO, we have applied an iterative approach, starting
with the support for content-based recommendations, using PredictionIO and a monitoring API for
data collection. After some researching and testing, the proposed architecture to satisfy the recommen-
dation use cases is presented in Figure 8:

The architecture consists of the following components:

• Monitoring API: Responsible of collect information that will be used later by the recommendation
algorithms.

• Recommender API: Receives client queries and give recommendations

• Recommender Framework: Responsible of execute the algorithms that respond to recommenda-
tion queries

In this overview, the MICO Platform is considered an external component, because the recommen-
dation system will be fed not only by information extracted within the MICO platform, but also by
information collected via the monitoring API.

For this first version of the recommendation system, these components are implemented using Pre-
dictionIO, applying several customizations:

51

Figure 8 Recommender System Architecture

• The Monitoring API is implemented using the Event Server

• The Recommendation Framework is implemented using PredictionIO platform

• The Recommendation API is implemented by engine endpoints

In the future, these components will be refined and complemented by additional functionality.

5.1.1 PredictionIO

PredictionIO is an OSS machine-learning server. It claims to ”empower developers and data scientists
to build smart applications with data productively”. PredictionIO provides many components that can
be used on top of the underlying core framework. Its architecture is based on different applications,
which use various engines (the base of recommendation algorithms) consisting of a set of pluggable
components that compose the recommendation algorithm. When an engine is built and configured (data
source, algorithm, model, ...), it has to be trained in order to generate the recommendation model. After
the training, the engine is deployed which creates an HTTP endpoint ready to receive queries and return
recommendations based on the trained model. Each application has a separate space to store data that
can be used by the engines in the recommendation algorithm.

For all the metadata PredictionIO manages, it uses an ElasticSearch26 instance, which can be also
used for other purposes.

5.2 How to install PredictionIO

There are several ways to install PredictionIO.

26https://github.com/elastic/elasticsearch

52

https://github.com/elastic/elasticsearch

Automatic installation
On Linux / Mac OS X, PredictionIO can be installed with a single command:

1 $ bash −c ”$(curl −s https://install.prediction.io/install.sh)”

The above script will complete the installation of PredictionIO, downloading and installing the
necessary components to make use of PredictionIO and its tools

Manual installation
In order to install PredictionIO manually, you can choose between installing it from source code,
using Vagrant machine, etc. Check http://docs.prediction.io/install/#method-3:
-manual-install for a complete list of manual installation methods.

After the installation, an application ID and access key has to be generated.
Check http://docs.prediction.io/templates/recommendation/quickstart/#3.
-generate-an-app-id-and-access-key to see how to do that.

Each application will have a separated space of data in the Event Server, so that sending informa-
tion to the Event Server requires to send also the application key along with the data in order to
the data be bound to that application. Each client application should have a PredictionIO instance
in order to not mix information between applications.

5.3 Content-Based recommendation engine

As described earlier, support for content-based recommendation was a priority for the initial version of
the MICO recommendation system. Considering that PredictionIO does not provide built-in algorithms
to deal with this, a dedicated engine to meet these use cases has been developed, which is described in
the following.

5.3.1 Overview

The Content-Based recommendation engine within PredictionIO uses different features from the content
of the item to suggest similar items. A commonly applied technique is to use the co-occurrence of words
/ tags to find similar items. However, there are items like media content (images, videos, etc) where this
approach is not applicable as such - manual tags would have to be added first, but it is a tedious and
costly task. However, by using the MICO platform, automatic annotations can be extracted from media
content, and can then be exploited for the aforementioned approaches.

5.3.2 How it works

The engine uses the PredictionIO Event Server as data source, so all the item information has to be
stored in the Event Server in order to the engine be able to access the information contained on it. The
engine is configured to work using some fields of the item (filled with MICO extracted information)
and an ElasticSearch instance. It uses the ElasticSearch More Like This feature (based on TF-IDF) to
suggest similar items to a given one. Basically, what TF-IDF does, is to collect the most relevant terms
in the fields (which can have different boost) of the given item and then execute a query over the rest of
items using those terms.

53

http://docs.prediction.io/install/#method-3:-manual-install
http://docs.prediction.io/install/#method-3:-manual-install
http://docs.prediction.io/templates/recommendation/quickstart/#3.-generate-an-app-id-and-access-key
http://docs.prediction.io/templates/recommendation/quickstart/#3.-generate-an-app-id-and-access-key

5.3.3 How to install, configure and deploy it

The first version of the engine is located at https://bitbucket.org/mico-project/
recommendation. Once the code has been downloaded (either using git or getting the zip file)
and put in a folder, the structure is as follows:

• src/ : Source code of the engine in Java

• build.sbt : File for sbt (Scala Build Tool) used when building the engine

• manifest.json : Metadata information used internally by PredictionIO

• engine.json : Engine metadata used to configure the engine for training and deploying

With the source code in place, PredictionIO command line tools are used to build, train and deploy
the engine.

Building the engine is as simple as execute a single command inside the folder:

1 $ pio build

The engine will be built and ready for training. Before training the engine to build the recommen-
dation model (in the case of this engine, is an ElasticSearch index), it has to be configured. To do that,
engine.json file has to be edited:

The next piece of code shows the content of the file:

1 {
2 ”id”: ”content−based−mlt−test”,
3 ”name”: ”Content−based MLT recommendation engine”,
4 ”description”: ”An engine to perform content−based recommendations using ElasticSearch

MoreLikeThis feature using Events stored in EventServer to feed ES”,
5 ”engineFactory”: ”eu.mico.recommendation.content.mlt.engine.EngineFactory”,
6 ”datasource”: {
7 ”params” : {
8 ”eventServerUrl”: ”EVENTSERVER URL”,
9 ”accessKey”: ”APPLICATION ACCESS KEY”,

10 ”entityType” : ”ENTITY TYPE”,
11 ”properties”: [”PROPERTY1”, ”PROPERTY2”, ...]
12 }
13 },
14 ”algorithms”: [
15 { ”name”: ”MltBasedAlgorithm”,
16 ”params” : { ”server” : ”SERVER”,
17 ”port” : 9300,
18 ”index” : ”ELASTICSEARCH INDEX”,
19 ”type” : ”ENTITY TYPE”,
20 ”properties”: [”PROPERTY1”, ”PROPERTY2”]
21 }
22 }
23]
24 }

In order to configure the engine, the params key of datasource and algorithms have to be configured:

54

https://bitbucket.org/mico-project/recommendation
https://bitbucket.org/mico-project/recommendation

• Datasource parameters

• eventserverUrl: The url of the PredictionIO event server (http://localhost:7070 is the default
url when PredictionIO event server is started)

• accessKey: The application access key obtained when the application was created

• entityType: The entity type of the events from that application to be used (each event sent to event
server has an entity type)

• properties: Array of properties from the events that will be used by this engine (each event sent
to event server can have properties)

• Algorithm parameters

• server: The ElasticSearch server. If empty, local PredictionIO ElasticSearch instance will be used

• port: The ElasticSearch server port. By default, ElasticSearch is running on port 9300

• index: The ElasticSearch index that will be created for this engine

• properties: Array of properties to be used from the events to feed the index. They should be the
same as datasource.

After that, to train the engine the next command has to be executed inside the engine folder:

1 $ pio build

Once the training has finished successfully, the engine can be deployed to an endpoint executing:

1 $ pio deploy

The default port where the engine is deployed is 8000
Now the engine is deployed and can receive queries to suggest similar items.

5.3.4 Example

Here is an example for about how the engine works: The event server has been fed with 12 items
representing web pages, from which MICO platform has extracted entities from different parts of the
web and they have been put in two properties: entities and about. An example of an event sent to the
event server has the following form:

1 {
2 ”eventId”: ”328q7oheSB9YX0enrZ z gAAAUvgAMVBgri8−ApL8Eo”,
3 ”event”: ”io event”,
4 ”entityType”: ”io item”,
5 ”entityId”: ”http://data.redlink.io/91/be2/post/Editoriale − La rotta”,
6 ”properties”: {
7 ”about”:
8 [”http://data.redlink.io/91/be2/entity/OGM”,
9 ”http://data.redlink.io/91/be2/entity/cambiamenti climatici”,

10 ”http://data.redlink.io/91/be2/entity/petrolio”,
11 ”http://data.redlink.io/91/be2/entity/COP21”

55

http://localhost:7070

12],
13 ”entities”:
14 [”http://data.redlink.io/91/be2/entity/petrolio”,
15 ”http://data.redlink.io/91/be2/entity/cambiamenti climatici”,
16 ”http://data.redlink.io/91/be2/entity/Cina”,
17 ”http://data.redlink.io/91/be2/entity/COP21”,
18 ”http://data.redlink.io/91/be2/entity/OGM”]
19 },
20 ”eventTime”: ”2015−03−03T14:18:41.857Z”
21 }

where:

• eventId: The id of the event. If empty, the EventServer will create a new one

• eventType: The type of the event. Useful if we want to manage different type of information
within the same application

• entityType: The type of the entity representing the event

• entityId: The id of the entity. In the example, the URL of a web page

• properties: properties attached to the event. In the example, the entities and about entities ex-
tracted by MICO

During the training, the engine uses these events to create a specific ElasticSearch index that will
be used later to get the suggestions. When the engine is deployed, it can receive POST queries to
return suggestions recommending items at http://localhost:8000/queries.json (assuming default server
and port). The query to be sent is a JSON object with the following form:

1 {
2 id: ”http://data.redlink.io/91/be2/post/Editoriale − La rotta”,
3 fieldsInfo: [
4 {field: ’entities’, boost: ’10’}
5]
6 }

where:

• id: The id of the entity to get similar items to it

• fieldsInfo: an array containing the fields to be used to get similar items and the boost (weight) of
that field. The boost is useful when the recommendations are based on several fields to give more
weight to one field than another

When sending that query to the engine, the suggestions for that id are returned:

1 $ curl −X POST −d ’{id: ”http://data.redlink.io/91/be2/post/Editoriale − La rotta”, fieldsInfo:
[{field: ’entities’, boost: ’10’}]}’ http://localhost:8000/queries.json

Response:

56

1 {
2 ”recommendations”:[
3 {”iid”: ”http://data.redlink.io/91/be2/post/Federica Ferrario − intervista”,

”value”:1.9876279},
4 {”iid”: ”http://data.redlink.io/91/be2/post/L’anno pi”, ”value”:1.4310836},
5 {”iid”: ”http://data.redlink.io/91/be2/post/MAS − Parole”, ”value”:1.4142134},
6 {”iid”:

”http://data.redlink.io/91/be2/post/OGM prolungato il bando per il MON810 − breve”,
”value”:0.08944272},

7 {”iid”: ”http://data.redlink.io/91/be2/post/Un santuario per 6 milioni − articolo Artico”,
”value”:0.07154754}

8]
9 }

where:

• iid: The item representing the entity id

• value: a similarity value (without normalization) where the higher value means the most similar
item

Taking the first suggestion, the event information stored is:

1 {
2 ”eventId”: ”opQqhdE2ds6jauoth2 oBgAAAUvgAKyqnN1zEGP8FRM”,
3 ”event”: ”io event”,
4 ”entityType”: ”io item”,
5 ”entityId”: ”http://data.redlink.io/91/be2/post/Federica Ferrario − intervista”,
6 ”properties”: {
7 ”about”:
8 [”http://data.redlink.io/91/be2/entity/Expo 2015”,
9 ”http://data.redlink.io/91/be2/entity/MAS”,

10 ”http://data.redlink.io/91/be2/entity/OGM”,
11 ”http://data.redlink.io/91/be2/entity/cambiamenti climatici”
12],
13 ”entities”:
14 [”http://data.redlink.io/91/be2/entity/Expo 2015”,
15 ”http://data.redlink.io/91/be2/entity/OGM”,
16 ”http://data.redlink.io/91/be2/entity/MAS”,
17 ”http://data.redlink.io/91/be2/entity/cambiamenti climatici”
18]
19 },
20 ”eventTime”: ”2015−03−03T14:18:35.562Z”
21 }

Since the query was done to check similar items based on “entities” property, it can be seen that this
item is the most similar one because they are sharing two entities.

Improvements that can be done in future iterations involve thresholds for suggestion values, query
parameters to limit the number of suggestions, parameters to exclude some items from the response, etc.

57

5.4 MICO recommender system outlook

There are several limitations to the current recommendation system, which will be worked on in the
next project phase:

Apart from content-based recommendation, MICO showcases also require support for recommen-
dation based on collaborative filtering of user-item interaction, e.g., to recommend users to projects.
For example, different users could have watched different videos and rated them in the News Video
showcase, which could be exploited by collaborative filtering algorithms. For this purpose, the current
PredictionIO-based framework will be extended with Apache Mahout or similar tools.

Beyond that, a key challenge and opportunity for more accurate cross-media recommendations in
MICO lies in the fact that different recommendation approaches and information sources have to be
combined: For instance, collaborative filtering works fine on an item level such as in the example
above. However, it does not work on the level of media fragments, e.g., to recommend specific news
segments (related to one specific topic) within news show items, which will require the use of automatic
or manual annotation on a fragment level. The same goes for the linking of different media types, which
requires additional metadata, e.g., describing that various documents, images and videos are actually
about the same species. Another example is the identification of persons in images (using face detection
and recognition). The goal is to find related textual, audio or video content based on the person identified
in the image and other (social) interactions by the the same user.

In order to enable the aforementioned approaches, the data model is paramount. Although the user
interactions can be represented in a generic way like ”user,item,action/value”, the data model of the
items being used are very important to refine the suggestions. Same items can be compared in many
different ways, using different features, so that depending on the nature of the feature being used, two
items can be similar or dissimilar. That is to say, a video can be similar to another based with respect
to technical parameters (duration, resolution) or content analysis (picture of a landscape) but not with
respect to the related topic or persons. Hence, the definition of consistent data models to represent the
information which will be used later in conjunction with the classic collaborative filtering algorithms
is very important at this stage. Moreover, data model definitions are very useful in order to decide
which are the most important features to be used by the algorithms to refine the results based on user
interactions. Depending on the use case to solve, it will be very helpful to use a subset of features
as specified in the data model. The data model should contain all the necessary data required by the
use cases which can range from information extracted by MICO platform to user profiles information
provided by the specific applications. Of course, combining these models with the user interactions is
fundamental.

The main objective will be to take advantage of these data models to enable cross-media recommen-
dations. Richer algorithms will be provided, which give more accurate recommendations by exploiting
a broad set of information sources. For this purpose, new engines that are customized to meet the related
showcase requirements will be developed and integrated into the proposed PredictionIO architecture.

58

Figure 9 Import VirtualBox Image

6 MICO Platform Installation

Authors: Jakob Frank, John Pereira, Horst Stadler, Christian Weigel

The MICO Platform Server runs on a Linux server providing the following MICO relevant services:

• Apache Marmotta with contextual extensions

• Broker

• RabbitMQ

• Hadoop HDFS server for binary content storage

For development and testing purpose, we provide a ready-to-use virtual image (see Section 6.1). If
you would like to install the MICO Platform on your own machine, have a look at Section 6.2.

6.1 VirtualBox Image

First of all you have to download and install VirtualBox27 on the machine the MICO Platform should
run on. Then you have to download the VirtualBox Image28. The username to log into the machine
(directly or via SSH) is user with the password user. Therefore you sould not use this image in public
accessible environments.

To import the image start VirtualBox and select Import Appliance... as shown in Figure 9. A dialog
will show up, where you have to select the VirtualBox Image you downloaded (file extension is .ova as
the image is provided as Open Virtualization Format). On the next screen you can change the appliance
settings, if needed. Continue clicking the Import button. Before you start the virtual machine, you
should have a look at the network settings (see Figure 10) by selecting the virtual machine and clicking
Settings.

27https://www.virtualbox.org/wiki/Downloads
28http://apt.mico-project.eu/download/MICO%20Platform%20v1.1.1.ova

59

Figure 10 VirtualBox Network Setting

6.1.1 Network settings

NAT
If you run the virtual machine (VM) on your local computer, and all interaction with the MICO Platform
happens within the VM, choosing NAT should be fine. In the shipped VM configuration the following
port forwardings are already set up:

VM host port VM guest destination port Description
22080 80 Welcome & Info page
8080 8080 Tomcat (broker and Marmotta)
15672 15672 RabbitMQ administration webinterface (username and password is mico)
22022 22 SSH server (username user)
50070 50070 HDFS NameNode web interface
50075 50075 HDFS DataNode web interface
8020 8020 HDFS NameNode metadata service
50090 50090 HDFS SecondaryNamenode
50010 50010 HDFS DataNode data transfer
50020 50020 HDFS DataNode metadata operations

Bridged Adapter
If you need to connect to the virtual machine via network from another computer (even if it is the
computer that runs the virtual machine) you might choose Bridged Adapter, but take care, as the default
passwords are insecure and therefore anyone (depending on your network configuration) might have
access to the virtual machine. You also have to adopt the /etc/hosts file in the virtual machine. Therefore
start the VM and login as user (directly or via SSH). Then open the file with root privileges:

1 sudo nano /etc/hosts

60

Figure 11 Start Screen

and replacing the line 127.0.0.1 mico-platform with x.x.x.x mico-project, where x.x.x.x is the IP address
of the platforms network interface. Now you need to restart the HDFS server so the change takes effect:

1 sudo /etc/init.d/hdfs stop; sudo /etc/init.d/hdfs start

Setup client system to access the platform VM
To access the platform VM from other machines, you need to make sure that the DNS/hostname mico-
platform resolves to the public IP of the VM. Accessing the platform via IP-Address or any other host-
name may result in unexpected behaviour of the system!

The easiest way is to configure mico-platform in the hosts file:

• For (most) *NIX systems you have to edit the file /etc/hosts (e.g. sudo nano /etc/hosts)

• For Windows systems the file is %SystemRoot%\system32\drivers\etc\hosts (where %System-
Root% is the Windows directory, normally it is C:\Windows). Make sure you open the file with
administrative rights.

The line to add is the same for *NIX as well as Windows: x.x.x.x mico−platform, where x.x.x.x is
127.0.0.1 of your network configuration is NAT, or it has to be the IP address of the platform machine
in any other case (e.g. 10.0.2.15).

Run the VM
If you have not started the virtual machine until now, do so by clicking the Run button and wait until
you can see the start screen as shown in Figure 11. Now all services are up and running and you can
begin to work with the MICO Platform. Open a browser and type http://mico-platform/ (or http://mico-
platform:22080/ if your network is configured as NAT) and you get the overview page as in Figure 12.

Also have a look at Section 6.2.5 for a description on starting extractors and injecting content.

6.2 Debian Repository

This section explains how to setup a MICO Platform Server yourself based on Debian Linux. All
required components for developing and running the MICO ecosystem are provided as custom Debian

61

Figure 12 Overview page

packages and available from a public available repository. If you want to setup a development server or
virtual image, this is the easiest way to get up and running.

The default installation provides the following services:

• Apache Marmotta with contextual extensions (can be found in the marmotta/ directory), running
on http://<hostname>:8080/marmotta

• Broker, simple user interface running on http://<hostname>:8080/broker

• RabbitMQ, running on <hostname>:5672, the status and administration user interface is acces-
sible via http://<hostname>:15672/

• Hadoop HDFS server running on hdfs://<hostname>/

As long as you did not change the user credentials you are asked for during installation, the default
username for all components is mico with password mico.

6.2.1 Setup Debian Jessie

The MICO packages are provided to work with Debian Jessie amd64 arch (at the time of writing Jessie
is in testing state). For MICO, a plain installation is sufficient, no special package preselection is needed.
You can start with the latest Debian Network Installation Image29.

Please note, that you should not create a user named mico as this is the default user that will be
created during the setup process of the MICO platform later.

29http://cdimage.debian.org/debian-cd/8.0.0/amd64/iso-cd/

62

6.2.2 Add MICO repository

To add the MICO repository create the file /etc/apt/sources.list.d/mico.list with root previleges and add
the following line:

1 ## APT Repository for the MICO FP7 Project
2

3 ## MICO main and contrib sections
4 deb http://apt.mico−project.eu/ mico main contrib
5 ## If you need access to the restricted non−free section add the
6 ## following line with your username and password:
7 #deb http://user:password@apt.mico−project.eu/ mico non−free

All packages are signed with a key30. To avoid warnings during installation and updating of the
MICO packages either install the mico-apt-repository package or add the key manually by typing the
following command in a shell:

1 wget −O− http://apt.mico−project.eu/apt−repo.key | sudo apt−key add −

To retrieve the new list of packages execute:

1 sudo apt−get update

Restricted / Non-Free extractors Some extractors contain restricted libraries that cannot be freely
distributed. Those are available in the non-free section of the mico repository. If you require access to
this section of the repository, you need to request an account31 and update the mico.list file created in
the beginning of this section.

6.2.3 Install HDFS

Currently, HDFS is not available from the repositories. You need to install it manually. For develop-
ment and testing server, this is done in a few steps which mainly follow the Singe Node Setup32 with
”Pseude-Distributed Operation”. HDFS is part of the Apache Hadoop project33 so we will download
the binary Hadoop release34, but only use the HDFS service. Most of the following steps need root
privileges, so make sure to prepend the sudo program to the following commands or run it as root.

As HDFS is written in JAVA install a JAVA runtime environment without GUI components and make
sure SSH is installed:

1 apt−get install default−jre−headless ssh

First, create the directories to store the hdfs data, the hadoop user home and the log directory:

1 mkdir −p /var/lib/hadoop/datanode
2 mkdir −p /var/lib/hadoop/namenode
3 mkdir −p /var/lib/hadoop/home
4 mkdir −p /var/log/hadoop

30Key-ID: AD261C57
31Simply ask on the project mailinglist for username/password: office@mico-project.eu
32http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
33At the time of writing, the current stable version of Hadoop was 2.6.0
34http://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-2.6.0/hadoop-2.6.0.tar.gz

63

Next, create the user and group the HDFS service should run as and fix the permissions:

1 useradd −d /var/lib/hadoop/home −K UID MIN=100 −K UID MAX=500 −K GID MIN=100
−K GID MAX=500 −K PASS MAX DAYS=−1 −U hadoop

2 chown hadoop:hadoop /var/lib/hadoop/∗
3 chmod 700 /var/lib/hadoop/home
4 chown hadoop:hadoop /var/log/hadoop

The HDFS start and stop scripts are using SSH to execute the proper commands. Therefore it is
necessary to setup authentication using keys:

1 sudo −u hadoop ssh−keygen −t dsa −P ’’ −f /var/lib/hadoop/home/.ssh/id dsa
2 sudo −u hadoop cp /var/lib/hadoop/home/.ssh/id dsa.pub

/var/lib/hadoop/home/.ssh/authorized keys

and accept the keys by running both commands

1 echo exit | sudo −u hadoop ssh mico−platform
2 echo exit | sudo −u hadoop ssh 0.0.0.0

Now it is time to download the Apache Hadoop binary. We will install it to the /opt directory

1 cd /opt ; wget
http://tweedo.com/mirror/apache/hadoop/common/hadoop−2.6.0/hadoop−2.6.0.tar.gz

2 tar −zxf hadoop−2.6.0.tar.gz

The default directory for the configuration files is /etc/hadoop:

1 ln −s /opt/hadoop−2.6.0/etc/hadoop/ /etc/hadoop

To configure HDFS for our needs, some config files have to to be adopted. First open
/etc/hadoop/hadoop-env.sh and look for:

1 export JAVA HOME=${JAVA HOME}

Set the variable JAVA HOME to the location of the JRE (e.g.export JAVA HOME=/usr/lib/jvm/default−java) .
To get the location of your JRE home directory run:

1 dirname $(readlink −f ‘which java‘ | sed s:/bin/java::)

And also add export HADOOP LOG DIR=/var/log/hadoop to /etc/hadoop/hadoop-env.sh.
Make sure the file /etc/hadoop/core-site.xml contains the following settings:

1 <configuration>
2 <property>
3 <name>hadoop.tmp.dir</name>
4 <value>/tmp</value>
5 </property>
6 <property>
7 <name>fs.defaultFS</name>
8 <value>hdfs://mico−platform:8020</value>
9 </property>

10 <property>
11 <name>dfs.client.read.shortcircuit</name>

64

12 <value>false</value>
13 </property>
14 </configuration>

Now configure the HDFS daemon by adding the following to /etc/hadoop/hdfs-site.xml:

1 <configuration>
2 <property>
3 <name>dfs.name.dir</name>
4 <value>file:///var/lib/hadoop/namenode</value>
5 </property>
6 <property>
7 <name>dfs.data.dir</name>
8 <value>file:///var/lib/hadoop/datanode</value>
9 </property>

10 <property>
11 <value>0.0.0.0</value>
12 <name>dfs.namenode.rpc−bind−host</name>
13 </property>
14 <property>
15 <value>0.0.0.0</value>
16 <name>dfs.namenode.servicerpc−bind−host</name>
17 </property>
18 <property>
19 <name>dfs.datanode.address</name>
20 <value>0.0.0.0:50010</value>
21 </property>
22 <property>
23 <name>dfs.datanode.hostname</name>
24 <value>mico−platform</value>
25 </property>
26 <property>
27 <name>dfs.client.use.datanode.hostname</name>
28 <value>true</value>
29 </property>
30 <property>
31 <name>dfs.replication</name>
32 <value>1</value>
33 </property>
34 <property>
35 <name>dfs.permissions.enabled</name>
36 <value>false</value>
37 </property>
38 <property>
39 <name>dfs.namenode.acls.enabled</name>
40 <value>false</value>
41 </property>
42 <property>
43 <name>fs.permissions.umask−mode</name>
44 <value>000</value>
45 </property>
46 <property>

65

47 <name>dfs.webhdfs.enabled</name>
48 <value>true</value>
49 </property>
50 <property>
51 <name>dfs.client.read.shortcircuit</name>
52 <value>false</value>
53 </property>
54 </configuration>

/etc/hadoop/slaves just contains one line:

1 mico−platform

After that, initialize the hdfs storage by running

1 sudo −u hadoop /opt/hadoop−2.6.0/bin/hdfs namenode −format

start the service

1 sudo −u hadoop /opt/hadoop−2.6.0/sbin/start−dfs.sh

and set the permission:

1 sudo −u hadoop /opt/hadoop−2.6.0/bin/hdfs dfs −chmod 777 /

After that HDFS is installed and ready to be used.
To start HDFS on boot you can use a simple start script like this one:

1 #! /bin/sh
2 ### BEGIN INIT INFO
3 # Provides: Hadoop HDFS
4 # Required−Start: sshd
5 # Required−Stop:
6 # Default−Start: 2 3 4 5
7 # Default−Stop:
8 # Short−Description:
9 ### END INIT INFO

10

11 PATH=/sbin:/bin
12

13 USER=hadoop
14 export HADOOP INSTALL=/opt/hadoop
15

16 case ”$1” in
17 start)
18 su −c ${HADOOP INSTALL}/sbin/start−dfs.sh $USER
19 ;;
20 stop)
21 su −c ${HADOOP INSTALL}/sbin/stop−dfs.sh $USER
22 ;;
23 restart|reload|force−reload|status)
24 echo ”Error: argument ’$1’ not supported” >&2
25 exit 3
26 ;;

66

27 ∗)
28 echo ”Usage: $0 start|stop” >&2
29 exit 3
30 ;;
31 esac

6.2.4 Install the MICO Platform

Now you can start the installation of the MICO platform by installing the mico-platform package and
dependencies. Type the following to initiate the installation:

1 sudo apt−get install mico−platform

This process might take several minutes, depending on your Internet connection bandwidth and your
computer. When it is finished, the MICO platform is up and running.

6.2.5 Access the MICO Platform

Web Interface
The Debian installation comes with a single entry-point for accessing the Web interfaces of the running
services. It is available at http://<hostname>/ (e.g. http://localhost/ if you are working on the server
itself). If the server is accessible from outside the development environment, please make sure to further
protect this page by e.g. a firewall or changes to the lighttpd configuration, as it contains the login details
for the MICO user.

Sample Service
The Debian installation also includes a sample service implemented in C++ that is used for demonstrat-
ing the platform functionality. This service is capable of transforming text contained in JPEG and PNG
images into plain text using the tesseract OCR library. To test it you have to start the service in a shell
as root:

1 mico ocr service <host> <user> <password>

Restricted / Non-Free extractors Some extractors contain restricted libraries that cannot be freely
distributed. Those are available in the non-free section of the MICO repository. If you require access to
this section of the repository, you need to request an account35 and update the mico.list file created in
the beginning of this section.

where <host>, <user> and <password> have to be replaced by the values you provided during
the installation. The default would be:

1 mico ocr service localhost mico mico

To check if the service and its dependencies are running you can access the broker web interface
http://<hostname>:8080/broker.

In order to run specific extractor chains please refer to Section 2.1.1.

35Simply ask on the project mailinglist for username/password: office@mico-project.eu

67

Inject Content
To inject content for analysis you can open the broker inject page
http://<hostname>:8080/broker/inject.html or use the provided simple command line tool as
follows:

1 mico inject <host> <user> <password> <files...>

where <files...> is a list of files on the local file system. The call will inject a single content item, with
creating a content part for each files given as argument.

6.3 Compiling the MICO Platform API yourself

If you would like to compile the platform yourself, the necessary steps are described in this section.
These instruction assume you are using a Debian Jessy Linux with the required build tools installed (see
below).

First you have to fetch the source from the public available repository36. This repository contains
the source code of the MICO platform API and modules. It provides implementations of the API for
both Java and C++ (version 11). The API is used by analysis services to register with the platform and
by other applications to interact with the MICO platform (e.g. inject and export content items).

6.3.1 Prerquisites

The Java API is built using Apache Maven and will therefore retrieve all its dependencies automatically.
Therefore, only the following prerequisites need to be satisfied:

JAVA API

• JDK 7

• Apache Maven

C++ API
Building the C++ API has additional requirements for native libraries. In particular, these are:

• GNU Autotools, GCC >= 4.8 with C++11 support

• cURL library for HTTP requests (apt−get install libcurl4−gnutls−dev)

• expat library for XML parsing (apt−get install libexpat1−dev)

• Boost 1.55 libraries for additional C++ functionalities
(apt−get install libboost1.55−dev libboost−log1.55−dev libboost−system1.55−dev)

• xxd for inlining SPARQL queries in C++ (part of VIM, apt−get install vim−common)

• protobuf for the event communication protocol (apt−get install libprotobuf−dev)

36https://bitbucket.org/mico-project/platform

68

• AMQP-CPP for communication with RabbitMQ (manual install37 or available from the MICO
apt repository (cf. Section 6.2.2))

• libhdfs3 for HDFS access (manual install38 or available from the MICO apt repository (cf.
Section 6.2.2), depends on further libraries: apt−get install libxml2−dev libkrb5−dev libgsasl7−dev
uuid−dev protobuf−compiler)

• Doxygen for building the documentation (apt−get install doxygen)

• libdaemon for running extractors (apt−get install libdaemon−dev)

For building the C++ binary tools (mico inject, etc.), there are the following additional dependen-
cies:

• magic library for guessing MIME type (apt−get install libmagic−dev)

For building the C++ sample analyzers (mico ocr service etc.), there are the following additional
dependencies:

• tesseract library for OCR with English database (apt−get install libtesseract−dev tesseract−ocr−eng)

• leptonica library for image processing (apt−get install libleptonica−dev)

6.3.2 Building

The API is built using the standard toolset for the respective environment (i.e. Apache Maven or GNU
make). When running tests, make sure the MICO Platform Server installation is started, and point to its
host name or IP address by setting the test.host environment variable appropriately, for example:

1 export test.host=”127.0.0.1”

Building JAVA
The complete platform is built using Maven. To build and install the current version, run

1 mvn clean install

on the command line. This will compile all Java source code, run the test suite, build JAR artifacts and
install them in the local Maven repository.

Binary Maven artifacts are periodically published to our development repositories:

1 <repositories>
2 ...
3 <repository>
4 <id>mico.releases</id>
5 <name>MICO Relesases Repository</name>
6 <url>http://mvn.mico−project.eu/content/repositories/releases/</url>
7 </repository>
8 <repository>
9 <id>mico.snapshots</id>

37https://github.com/CopernicaMarketingSoftware/AMQP-CPP
38https://github.com/PivotalRD/libhdfs3/releases/latest

69

10 <name>MICO Snapshots Repository</name>
11 <url>http://mvn.mico−project.eu/content/repositories/snapshots/</url>
12 </repository>
13 </repositories>

Building C++
The C++ bindings of the platform are built using CMake. To build the C++ API, create a new directory
(can be located anywhere) and in that directory run:

1 cmake /path/to/repository/api/c++

This will generate the required Makefile to compile and install the C++ API.
After the configuration succeeds (i.e. all dependencies are found), the C++ libraries can be built and

automatically tested using GNU make as follows:

1 make

To create a complete API documentation of the MICO Platform API in the api/c++/doc directory,
run

1 make doc

To install the C++ libraries and headers to the predefined prefix, run

1 make install

70

References

[AKW14] Patrick Aichroth, Thomas Kurz, and Christian Weigel. D2.2.1 First Specifications in Cross-
Media Analysis. Deliverable. MICO, 2014. URL: http://www.mico-project.eu/wp-
content/uploads/2014/12/D2.2.1-D3.2.1-D4.2.1-D5.2.1_First_specs_
07112014.pdf.

[BG14] Dan Brickley and R.V. Guha. RDFS RDF Schema 1.1. W3C Recommendation.
http://www.w3.org/TR/rdf-schema/. W3C, Feb. 2014.

[DT05] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection.” In: Com-
puter Vision and Pattern Recognition. 2005.

[Fel+10] P.F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part Based Mod-
els.” In: IEEE Pattern Analysis and Machine Intelligence 32.9 (2010), pp. 1627–1645.

[Fer01] Jon Ferraiolo. Scalable Vector Graphics (SVG) 1.0 Specification. W3C Recommendation.
http://www.w3.org/TR/2001/REC-SVG-20010904. W3C, Sept. 2001.

[HS13] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. 2013. URL: http://www.
w3.org/TR/sparql11-query/.

[KS14] Thomas Kurz and Kai Schlegel. D4.2.1 First Specifications in Cross-Media Querying. De-
liverable. MICO, 2014.

[KSK15] Thomas Kurz, Kai Schlegel, and Harald Kosch. “Enabling access to Linked Media with
SPARQL-MM.” In: Proceedings of the 24nd international conference on World Wide Web
(WWW2015) companion (LIME15). 2015. DOI: 10.1145/2740908.2742914.

[Kur14a] Thomas Kurz. D4.1.1 State of the Art in Cross-Media Querying. Deliverable. MICO, 2014.

[Kur14b] Thomas Kurz. Squebi. Presentation at the ISWC Developer Workshop (ISWC2014). 2014.

[LZ13] Jianguo Li and Yimin Zhang. “Learning SURF Cascade for Fast and Accurate Object De-
tection.” In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2013, pp. 3468–3475. ISBN: 1063-6919. DOI: 10.1109/CVPR.2013.445.

[MM04] Frank Manola and Eric Miller. RDF RDF Primer. W3C Community Draft.
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. W3C, Feb. 2004.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C Rec-
ommendation. http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/. W3C, Jan.
2008.

[SB14] Kai Schlegel and Emanuel Berndl. D3.2.1 First Specifications in Metadata Publishing. De-
liverable. MICO, 2014. URL: http://www.mico-project.eu/wp-content/uploads/
2014/12/D2.2.1-D3.2.1-D4.2.1-D5.2.1_First_specs_07112014.pdf.

[SCS13] Robert Sanderson, Paolo Ciccarese, and Herbert Van de Sompel. OADM Open Annotation
Data Model. W3C Community Draft. http://www.openannotation.org/spec/core/. W3C,
Feb. 2013.

[SF14] Sebastian Schaffert and Sergio Fernández. D6.1.1 System Architecture and Development
Guidelines. Deliverable. MICO, 2014. URL: http : / / www . mico - project . eu / wp -
content/uploads/2014/06/Del-6.1.1-MICO-Architecture.pdf.

[Tro+12] Raphaël Troncy et al. Media Fragments URI 1.0 (basic). W3C Recommendation.
http://www.w3.org/TR/2012/REC-media-frags-20120925/. W3C, Sept. 2012.

71

http://www.mico-project.eu/wp-content/uploads/2014/12/D2.2.1-D3.2.1-D4.2.1-D5.2.1_First_specs_07112014.pdf
http://www.mico-project.eu/wp-content/uploads/2014/12/D2.2.1-D3.2.1-D4.2.1-D5.2.1_First_specs_07112014.pdf
http://www.mico-project.eu/wp-content/uploads/2014/12/D2.2.1-D3.2.1-D4.2.1-D5.2.1_First_specs_07112014.pdf
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1145/2740908.2742914
http://dx.doi.org/10.1109/CVPR.2013.445
http://www.mico-project.eu/wp-content/uploads/2014/12/D2.2.1-D3.2.1-D4.2.1-D5.2.1_First_specs_07112014.pdf
http://www.mico-project.eu/wp-content/uploads/2014/12/D2.2.1-D3.2.1-D4.2.1-D5.2.1_First_specs_07112014.pdf
http://www.mico-project.eu/wp-content/uploads/2014/06/Del-6.1.1-MICO-Architecture.pdf
http://www.mico-project.eu/wp-content/uploads/2014/06/Del-6.1.1-MICO-Architecture.pdf

MICO unites leading research institutions from the
information extraction, semantic web, and multi-
media area with industry leaders in the media sector.

Salzburg Research
Coordinator, Austria

Fraunhofer
Germany

Insideout10
Italy

UMEA University
Sweden

University of Oxford
United Kingdom

University of Passau
Germany

Zaizi Ltd
United Kingdom

MICO Early Adopters

MICO is a research project partially funded by
the European Union 7th Framework Programme
(grant agreement no: 610480).

Images are taken from the Zooniverse crowdsourcing project
Snapshot Serengeti that will apply MICO technology to better
analyse the multimedia content. https://www.zooniverse.org

ISBN 978-3-902448-45-3

	Executive Summary
	Enabling Technology Models for Extractors & Orchestration Components
	MICO Extractors
	Extractor Setup
	Extractor Output Implementation

	Object and Animal Detection – OAD (TE-202)
	Deviations and additions
	Specific comments

	Face detection – FDR (TE-204)
	Deviations and additions
	Specific comments

	Temporal Video Segmentation – TVS (TE-206)
	Specific comments

	Audiovisual Quality – AVQ (TE-205)
	Specific comments

	Speech-to-text (TE-214)
	Deviations and additions
	Specific comments

	Sentiment analysis (TE-213)
	Deviations and additions
	Specific comments

	Chatroom cleaner (TE-216)
	Deviations and additions
	Specific comments

	Phrase Structure Parser (TE-217)
	Specific comments

	Audio Cutting Detection (TE-224)
	Deviations and additions
	Specific comments

	MICO Broker
	Orchestration
	Integration
	Early lessons learned, outlook

	Enabling Technology Models for Cross-media Publishing
	Introduction to Multimedia Metadata Model
	Introduction to Metadata Model API
	Design Decisions
	Technologies
	Anno4j
	API Overview

	Extending Metadata Model API
	Step 1: Creating the POJOs
	Step 2: Annotating the created POJOs
	Step 3: Creating the Annotation object

	Enabling Technology Models for Cross-media Querying
	Introduction to SPARQL
	Introduction to SPARQL-MM
	Sparql-MM in Action

	Enabling Technology Models for Cross-media Recommendations
	Recommendation architecture and technologies
	PredictionIO

	How to install PredictionIO
	Content-Based recommendation engine
	Overview
	How it works
	How to install, configure and deploy it
	Example

	MICO recommender system outlook

	MICO Platform Installation
	VirtualBox Image
	Network settings

	Debian Repository
	Setup Debian Jessie
	Add MICO repository
	Install HDFS
	Install the MICO Platform
	Access the MICO Platform

	Compiling the MICO Platform API yourself
	Prerquisites
	Building

