
D6.2.1
Platform: Initial Version

Grant Agreement No: 610480
Project title: Media in Context
Project acronym: MICO
Document type: D (deliverable)
Nature of document P (prototype)
Dissemination level: PU (public)
Document number: 610480/SRFG/D6.2.1/D/PU/a1
Responsible editor(s): Sebastian Schaffert, Sergio Fernández
Reviewer(s): Antonio Pérez, Jakob Frank
Contributing participants: SRFG, FHG, UP, UMU, UOX, ZA, IO10
Contributing workpackages: WP2, WP3, WP4, WP5, WP6
Contractual date of delivery: 31 October 2014

Abstract
This deliverable contains the initial implementation the MICO platform and integration of the enabling
technology components from WP2-5. The current version is the first of three iterations. It provides an
implementation of the initial architecture proposed in D6.1.1, as well as the early evolution of some
aspects within the project.

Keyword List
implementation

c� MICO 2014.

Platform: Initial Version

Sebastian Schaffert, Sergio Fernández

Salzburg Research, Austria
Email: {firstname.lastname}@salzburgresearch.at

6 November 2014

Abstract
This deliverable contains the initial implementation the MICO platform and integration of the enabling
technology components from WP2-5. The current version is the first of three iterations. It provides an
implementation of the initial architecture proposed in D6.1.1, as well as the early evolution of some
aspects within the project.

Keyword List
implementation

Contents

1 Introduction 1
1.1 Audience . 1
1.2 Source Code . 1

2 Architecture evolution (from D6.1.1) 2

3 MICO Client and Extractor API 3
3.1 API Overview . 3
3.2 Writing Analyzers . 3

3.2.1 Analyzer Implementation . 3
3.2.2 Analyzer Registration . 5

3.3 Writing Client Applications . 5

4 System Implementation 7
4.1 Overview . 7
4.2 Triple Store: Apache Marmotta . 7

4.2.1 Metadata Representation . 7
4.2.2 Interaction . 7
4.2.3 RDF Schema . 8
4.2.4 SPARQL Query Extensions . 8

4.3 Content Store: FTP . 9
4.4 Messaging: RabbitMQ and Protocol Buffers . 11

4.4.1 Queues and Exchanges . 11
4.4.2 Messaging Protocol . 11

4.5 MICO Broker . 13

5 System Usage 15
5.1 Building from the source . 15

5.1.1 Building (Java) . 15
5.1.2 Building (C++) . 15

5.2 Packaging . 16
5.3 Installation . 16
5.4 Usage . 17

6 Perspectives 18
6.1 MICO Broker: Service Orchestration . 18
6.2 MICO API: Vocabulary API . 18
6.3 MICO Persistence: More Elaborate Storage . 18

iii

List of Figures

1 Content Part Metadata shown in Apache Marmotta’s Metadata Explorer 8
2 RabbitMQ queue overview for the MICO platform. 12
3 MICO Broker user interface with dependency graph and content item processing status. 13
4 MICO Broker user interface with content item inspection. 14

List of Listings

1 Example analysers in C++ . 4
2 Analyser registration in C++ . 5
3 Creating a new content part from C++ . 6
4 Cloning the git repository with the platform source code 15
5 Using Maven to build the platform . 15
6 Maven repositories configuration . 15
7 Build with CMake . 16
8 Package Debian components with Maven . 16
9 Repository configuration . 17
10 GPG key installation . 17
11 Platform installation . 17
12 Example how to extract text with Tesseract OCR . 17
13 Example how to inject content to the MICO Platform 17

iv

1 Introduction

This deliverable contains the initial implementation the MICO platform and integration of the enabling
technology components from WP2-5. The current version is the first of three iterations. It provides an
implementation of the initial architecture proposed in D6.1.1 [SF14], as well as the early evolution of
some aspects within the project.

This document is only the basic description pointing to the actual implementation, as well as some
other complementary technical documents.

1.1 Audience

The audience this document target is mainly technical people interested in working with the MICO
platform. At this stage of the project developers in the consortium. The foundations of many aspects
are not described to make this concise and useful document for that target group.

1.2 Source Code

Deliverable D6.2.1 is a software deliverable, so the main part is not this report but the actual source
code and implementation. Also, a lot of the documentation is available online to make access easier for
developers.

See also:

• C++/Java API Documentation at http://mico-project.bitbucket.org/api/1.0/

• Source Code at https://bitbucket.org/mico-project/platform

1

2 Architecture evolution (from D6.1.1)

The MICO Architecture (D6.1.1) provided a first conceptual overview over the different modules, ser-
vices and technologies that together build the MICO platform. During the development of the first
platform prototype, some of the decisions made in D6.1.1 had to be adapted to fit the prototype environ-
ment and the emerging requirements of the use cases. A revised version of the architecture deliverable
will be published as D6.1.2. The following list gives a preliminary summary of the changes:

RabbitMQ Messaging. Deliverable D6.1.1 originally suggested to use Apache Zookeeper for event
messaging and configuration storage. During the development, we decided to switch instead to Rab-
bitMQ1, as it provides more high-level communication infrastructure, is better suited for the main pur-
pose of communication, and is generally more lightweight and easier to administer than Zookeeper.
The conceptual architecture remains the same, and we might change the messaging backend in later
iterations of the prototype if needed.

URL-based File Access. Deliverable D6.1.1 suggested using Hadoop HDFS as distributed file system
for accessing content items, particularly large binary data like videos. Since the requirements on content
storage are not yet completely clear and need to take into account the storage systems used by the use
case partners, we instead implemented a more simple approach in the first prototype where the different
content parts of a content item are retrieved using URL-based methods (HTTP or FTP). In that way,
we remain flexible for future changes to the storage system instead of binding ourselves to a particular
technology. In the current prototype, the content items are stored on a simple FTP server [PR85].

Simplified Servive Orchestration. As the service orchestration has not yet been developed in WP2,
we instead provided a much simpler service orchestration component as initial prototype for being able
to experiment with the system. This orchestration component is not capable of building individual
execution plans for each analysis task. Instead, it has a shared service dependency tree that it uses for
controlling the current state of the analysis process. Analysis of a content item is finished when there
are no more possible state transitions in the dependency graph (see Section 4).

1http://www.rabbitmq.com/

2

3 MICO Client and Extractor API

See full C++/Java API Documentation at http://mico-project.bitbucket.org/api/1.0/

3.1 API Overview

The following sections give an overview over the MICO API and how to use it. The MICO API exists
in implementations in both Java and C++ and can be used for implementing both, analysis services and
client applications. The MICO API covers the following functionalities:

• Persistence: creating, accessing, and updating content items and content item metadata; creating,
accessing and updating analysis results.

• Event Messaging: notifying other components about created or updated content items; waiting
for notifications from other components

• Service Skeletons: abstract base classes that can be used for easily implementing custom ser-
vices and running them as Unix services or Java components

As much as possible and reasonable, we tried to keep the C++ and Java APIs identical. In cases
where this would break common language patterns, we chose a specific implementation instead. A full
documentation of the C++ version of the API, automatically generated from the source code, is available
in the online documentation2.

In the prototype system, the MICO API uses a common username and password for accessing all
platform services (i.e. persistence and messaging). This username and password need to be provided by
all services that register with the platform (see e.g. 3.2.2 below).

3.2 Writing Analyzers

3.2.1 Analyzer Implementation

Analyzers for different content types are implemented by deriving from the base class
AnalysisService. This base class requires five methods to be implemented:

• getServiceID(): needs to return a URI uniquely identifying this service; this information is used
internally as well as in provenance information for analysis results

• getProvides(): needs to return a symbolic representation of the type of output produced by this
analyzer; in the most simple case, this can be a MIME type, but more complex symbols are also
feasible if needed (e.g. encoding the language of a text)

• getRequires(): needs to return a symbolic representation of the type of input consumed by this
analyzer; same conditions as for getProvides(); the service orchestration component uses this
information to build its dependency graph

• getQueueName(): can optionally return the RabbitMQ queue name to be used by this service; in
case it returns null or the empty string, a random queue name is used

2http://mico-project.bitbucket.org/api/1.0/

3

• call(function callback, ContentItem item, URI part): contains the actual implementation of the
analysis service; passes identifiers for the content item and part that is supposed to be analysed,
as well as a callback function to use for notifying the service broker that it has created new results

The prototype source code contains example analysers in C++ and Java that show how AnalysisServices
can easily be implemented. The following C++ excerpt shows an analyser that calls an OCR library
implemented in C. Note that the code has been simplified for readability by omitting error and exception
handling:

Listing 1: Example analysers in C++

c l a s s OCRAnalys i sSe rv ice : p u b l i c A n a l y s i s S e r v i c e {

p r i v a t e :
t e s s e r a c t : : TessBaseAPI a p i ;

p u b l i c :
OCRAnalys i sSe rv ice ()

: A n a l y s i s S e r v i c e (” h t t p : / / www. mico�p r o j e c t . o rg / s e r v i c e s /OCR�png ” ,
” image / png ” , ” t e x t / p l a i n ” , ” ocr�queue�png ”) {

a p i . I n i t (NULL, ” eng ”) ;
}

˜ OCRAnalys i sSe rv ice () {
a p i . End () ;

}

void c a l l (s t d : : f u n c t i o n<void (c o n s t C o n t e n t I t e m& ci , c o n s t URI& o b j e c t)> c a l l b a c k ,
C o n t e n t I t e m& ci , URI& o b j e c t) {

C o n t e n t ⇤ i m g P a r t = c i . g e t C o n t e n t P a r t (o b j e c t) ;

i f (i m g P a r t != NULL) {
/ / read da ta from c o n t e n t p a r t i n t o in�memory b u f f e r
s t d : : i s t r e a m ⇤ i n = imgPar t�>g e t I n p u t S t r e a m () ;
s t d : : v e c t o r<char> buf = s t d : : v e c t o r<char>(s t d : : i s t r e a m b u f i t e r a t o r <char>(⇤ i n) ,

s t d : : i s t r e a m b u f i t e r a t o r <char > ()) ;
d e l e t e i n ;

P ix ⇤ p i c = pixReadMem ((c o n s t unsigned char ⇤) buf . d a t a () , buf . s i z e ()) ;

/ / l e t t e s s e r a c t do i t s magic
a p i . Se t Image (p i c) ;
char⇤ p l a i n T e x t = a p i . GetUTF8Text () ;

/ / w r i t e p l a i n t e x t t o a new c o n t e n t p a r t
C o n t e n t ⇤ t x t P a r t = c i . c r e a t e C o n t e n t P a r t () ;
t x t P a r t �>s e t T y p e (” t e x t / p l a i n ”) ;

/ / s e t some metada ta p r o p e r t i e s (provenance i n f o r m a t i o n e t c)
t x t P a r t �>s e t R e l a t i o n (DC : : c r e a t o r , g e t S e r v i c e I D ()) ;
t x t P a r t �>s e t R e l a t i o n (DC : : p rovenance , g e t S e r v i c e I D ()) ;
t x t P a r t �>s e t P r o p e r t y (DC : : c r e a t e d , ge tTimes tamp ()) ;
t x t P a r t �>s e t R e l a t i o n (DC : : sou rce , o b j e c t . s t r i n g V a l u e ()) ;

s t d : : o s t r e a m ⇤ o u t = t x t P a r t �>g e t O u t p u t S t r e a m () ;
⇤ o u t << p l a i n T e x t ;
d e l e t e o u t ;

4

/ / n o t i f y b r o k e r t h a t we c r e a t e d a new c o n t e n t p a r t by c a l l i n g t h e c a l l b a c k
/ / f u n c t i o n p a s s ed as argument
c a l l b a c k (c i , t x t P a r t �>getURI ()) ;

d e l e t e i m g P a r t ;
d e l e t e t x t P a r t ;
d e l e t e p i c ;
d e l e t e [] p l a i n T e x t ;

}
} ;

} ;

3.2.2 Analyzer Registration

Analyzers need to be registered with the MICO platform to be taken into account when planning the
analysis of a content item. Registration is done via the EventManager instance that is part of the MICO
API:

Listing 2: Analyser registration in C++

/ / c r e a t e s e r v i c e i n s t a n c e
A n a l y s i s S e r v i c e ⇤ s e r v i c e = new . . .

/ / c r e a t e e v e n t manager i n s t a n c e w i t h g i v e n s e r v e r name and c r e d e n t i a l s and
/ / r e g i s t e r s e r v i c e i n s t a n c e
EventManager eventManager (s e r v e r , u se r , password) ;
even tManager . r e g i s t e r S e r v i c e (s e r v i c e) ;

/ / w a i t f o r s e r v i c e t o be s topped , e . g . by a SIGTERM
. . .

/ / u n r e g i s t e r s e r v i c e i n s t a n c e b e f o r e s h u t t i n g down
eventManager . u n r e g i s t e r S e r v i c e (s e r v i c e) ;
d e l e t e s e r v i c e ;

To avoid repetitively writing the same registration and signal handling code, the C++ version of the
API contains a library (libmico daemon) that developers can link against to create a Unix daemon to be
started like other Unix services. In this case they just need to start the daemon, handing over the service
instances.

3.3 Writing Client Applications

Client applications are applications that interact with the MICO platform in various ways. Client appli-
cations use the MICO platform mainly for two purposes:

• injecting new content items for analysis

• accessing the analysis results (content and metadata) when analysis is finished

Since analysis results and metadata are stored in a Apache Marmotta triple store, applications that
only intend to access these results can simply use the standard facilities offered by Apache Marmotta
(Linked Data, LDP, and SPARQL query language). Applications that require more interaction (e.g. for
creating content items) need to use the MICO API instead. In this case, a client application is not very
different from an analysis service. It will usually first create an EventManager instance, and then access

5

the MICO platform through the persistence service managed by the EventManager, and finally notify
the EventManager about any content items it changed:

Listing 3: Creating a new content part from C++

/ / c r e a t e e v e n t manager i n s t a n c e
EventManager eventManager (s e r v e r , m ic o u se r , m i c o p a s s) ;

/ / c r e a t e new c o n t e n t i t e m
C o n t e n t I t e m ⇤ i t em = eventManager . g e t P e r s i s t e n c e S e r v i c e () . c r e a t e C o n t e n t I t e m () ;

/ / read a f i l e from d i s k and add i t as p a r t
i n t fd = open (f i l e n a m e , O RDONLY) ;
i f (fd >= 0) {

s t r u c t s t a t s t ;
f s t a t (fd ,& s t) ;

s i z e t l e n = s t . s t s i z e ;
char⇤ b u f f e r = (char ⇤)mmap(NULL, len , PROT READ , MAP SHARED, fd , 0) ;

/ / c r e a t e new c o n t e n t p a r t i n c o n t e n t i t e m and s e t me tada ta p r o p e r t i e s
C o n t e n t ⇤ c = i tem�>c r e a t e C o n t e n t P a r t () ;
c�>s e t T y p e (getMimeType (b u f f e r , l e n)) ;
c�>s e t P r o p e r t y (DC : : sou rce , a rgv [i]) ;
c�>s e t R e l a t i o n (DC : : c r e a t o r , URI (” h t t p : / / www. mico�p r o j e c t . o rg / t o o l s / m i c o i n j e c t ”)) ;
c�>s e t P r o p e r t y (DC : : c r e a t e d , ge tTimes tamp ()) ;

/ / w r i t e f i l e c o n t e n t s t o c o n t e n t p a r t
s t d : : o s t r e a m ⇤ os = c�>g e t O u t p u t S t r e a m () ;
os�>w r i t e (b u f f e r , l e n) ;

/ / c l e a n up
d e l e t e os ;
d e l e t e c ;
munmap (b u f f e r , l e n) ;

}

/ / n o t i f y e v e n t manager t h a t new c o n t e n t i t e m i s a v a i l a b l e
eventManager . i n j e c t C o n t e n t I t e m (⇤ i t em) ;

/ / c l e a n up
d e l e t e i t em ;

6

4 System Implementation

The following sections describe the major server-side components of the MICO platform and how they
interact with each other.

4.1 Overview

4.2 Triple Store: Apache Marmotta

4.2.1 Metadata Representation

Apache Marmotta is used for storing RDF metadata and analysis results for content items and their
parts. Content items and content parts are uniquely identified using URIs. Metadata for content items is
stored in separate named graphs according to the following patterns:

• <URI>-metadata identifies the named graph used for storing general content item metadata (e.g.
provenance information, title, author, keywords, . . .)

• <URI>-execution identifies the named graph used for storing information about the execution of
analysers, e.g. statistical information about the performance of analysers, the dependency graph.
. . .

• <URI>-result identifies the named graph used for storing extracted analysis results; these are
usually higher level descriptions suitable for querying by client applications and not raw analyser
output

where <URI> represents the URI of the content item. All URIs are created using the host-
name and port of the server as prefix, followed by a randomly generated UUID. For exam-
ple, if the server is running on 192.168.56.101, then an automatically generated URI could be
http://192.168.56.101:8080/marmotta/b4eede30-6359-11e4-9803-0800200c9a66. Metadata
for content parts is stored in a single separate named graph, using the URI of the content part as iden-
tifier. The concrete schemas used for representing metadata are in the first prototype still up to the
analysis components. Once WP3 provides first versions of the schemas to use, the MICO API will
provide convenient API calls for creating correct metadata.

4.2.2 Interaction

Content items, parts, and analysis results stored in Apache Marmotta can be accessed in one or more of
the following ways:

• SPARQL endpoint: a SPARQL 1.1 endpoint [FWCT13] is provided by Marmotta and can be
used for both, querying and updating metadata; the SPARQL endpoint is accessible in the browser
through the Apache Marmotta admin interface, and as webservice conforming to the SPARQL
protocol at /marmotta/sparql/select and /marmotta/sparql/update. Using SPARQL is
the most powerful method of interacting with content item metadata, but might be too complex
for simple cases. SPARQL is described at http://www.w3.org/TR/sparql11-query/.

• Linked Data: content item and content part metadata can also be accessed using the Linked
Data principles by directly accessing the URI of the content item or part and using HTTP content
negotiation for retrieving the data in the proper format. The Linked Data principles are described
at http://linkeddatabook.com/editions/1.0/

7

Figure 1 Content Part Metadata shown in Apache Marmotta’s Metadata Explorer

• Linked Data Platform: the Linked Data Platform extends the Linked Data principles with
containers and with methods for creating and updating RDF metadata [SAM14]. This technology
is currently developed in Apache Marmotta.

4.2.3 RDF Schema

The data stored in Marmotta for representing content item metadata currently uses properties from
several well-known RDF vocabularies:

• LDP Containers: the membership of content parts in their content item is modeled using the
vocabulary defined for containers as part of the Linked Data Platform specification [SAM14];
most importantly, the ldp:contains property defines the relation between a content part and the
content item it is part of

• Dublin Core: basic descriptions and provenance information is provided using the Dublin
Core vocabulary [DCT12]; the properties currently used are dc:title (name of content part),
dc:created (creation date of content part), dc:creator (creator of content part, either user,
extractor, or tool), dc:source (URI of content part this part was derived from) and dc:type
(symbolic type representation)

Figure 1 shows the representation of a content part (result of an analysis proces) in the Apache
Marmotta Metadata Explorer. Note the URI schema used for generating the content part URI and the
contexts, as well as the Dublin Core properties used to describe provenance information. Beyond these
two basic vocabularies, implementations of extractor services are generally free to choose any schema
that is necessary. Extractor services should, however, strive to use the vocabularies defined by WP33.
The MICO API will provide specific support for these vocabularies once they have been completed.

4.2.4 SPARQL Query Extensions

As preparation for implementing the SPARQL-MM [KSS+14, PBT+] query language in WP4, the
SPARQL support in Apache Marmotta4 has been significantly improved. All SPARQL queries are now

3http://www.mico-project.eu/ns/platform/1.0/schema#
4http://marmotta.apache.org/kiwi/sparql.html

8

directly translated into SQL queries in the underlying database following the relational schema used
internally by Apache Marmotta. This gives the following benefits:

• existing geo and multimedia extensions of the underlying database can be used from SPARQL
(e.g. PostGIS for working with geometric shapes)

• filter queries over large amounts of result data (e.g. region information about each key frame in a
video) can be efficiently evaluated

• aggregation queries needed for recommendation in WP5 can be efficiently evaluated

The relational schema of Apache Marmotta consists of two main tables, NODES and TRIPLES. The
NODES table stores an entry for each RDF node (URI, blank node, or literal) used in the triple store.
In case the node is typed (e.g. a number or date), the typed value is also stored in a separate column.
The TRIPLES table contains quadruples referring to the nodes table for subject, predicate, object, and
context.

Table 1 gives an overview over how SPARQL constructs are mapped into SQL. This information
might be useful to estimate evaluation performance or debugging. Note that the evaluation of certain
SPARQL constructs can lead to considerable evaluation time (e.g. unnecessary use of DISTINCT, OR-
DER BY, GROUP BY or subqueries). Therefore, care should be taken when writing complex queries.

SPARQL Extensions are generally implemented as new SPARQL functions (recommended) or so-
called virtual predicates (not recommended).

• a SPARQL function needs to be mapped into a corresponding SQL expression by deriving from
the interface NativeFunction provided by Apache Marmotta. The most important method to
implement is the translation to SQL; in many cases, this translation has to be done separately for
different SQL dialects.

• a virtual predicate needs to be handled separately by extending the SQL mapping functionality;
as this is both confusing for the end user and can easily break the mapping implementation, this
is not recommended.

4.3 Content Store: FTP

Binary content of content parts is currently stored using a simple FTP server. This decision has been
taken because it is not yet clear in which way use cases will be able to provide access to large amounts
of contents like videos. FTP offers an URL-based file access that can easily be changed to a more
sophisticated storage system at a later stage (see also Section 2). The FTP implementation used by the
prototype system is proftpd5, but any other FTP server can be used.

The binary content of a content part is stored using FTP URLs conforming to the following pattern:

ftp://<user>@<password>:<hostname>/<content_item-uuid>/<content_part-uuid>.bin

For example, the content part with UUID b4eede30-6359-11e4-9803-0800200c9a66, part of content
item with UUID 5eb9d140-635a-11e4-9803-0800200c9a66 on server 192.168.56.101 and user-
name/password mico/mico will use the following URI for accessing and writing binary content:

ftp://mico@mico:192.168.56.101/5eb9d140-635a-11e4-9803-0800200c9a66/ -
b4eede30-6359-11e4-9803-0800200c9a66.bin

All binary content is accessed in a streaming fashion by the MICO API (both Java and C++).
5http://www.proftpd.org/

9

Table 1 Apache Marmotta SPARQL to SQL Mapping
SPARQL Construct SQL Construct
Node Value Use
(in SELECT part)

Node ID projection and subsequent lookup in nodes table

Node Value Use
(outside SELECT part)

JOIN of triples table with nodes table

Aggregation, GROUP BY,
HAVING

SQL Aggregation, GROUP BY and HAVING

LIMIT, OFFSET LIMIT, OFFSET
ORDER BY ORDER BY
DISTINCT DISTINCT
Triple Patterns FROM and JOIN over triples table
OPTIONAL LEFT JOIN over triples table
FILTER WHERE conditions or LEFT JOIN conditions (in case of

OPTIONAL)
Subquery Subquery
NOT EXISTS NOT EXISTS and subquery
UNION two subqueries with balanced projection to same

columns and a UNION
MINUS two subqueries with NOT EXISTS
BIND internally resolved with aliases when building the query
type casting (e.g. xsd:integer) type coercion (selecting appropriate column from nodes

table for variables, casting for constants)
SPARQL function SQL function (for all built-in SPARLQL functions; ex-

tensions need to be mapped separately)
SPARQL comparison SQL comparison with appropriate type coercion
SPARQL arithmetics SQL arithmetics with appropriate type coercion

10

4.4 Messaging: RabbitMQ and Protocol Buffers

4.4.1 Queues and Exchanges

RabbitMQ6 is used as a platform and language independent system for message and event exchange
between components in the MICO platform. The basic building blocks of RabbitMQ are queues and
exchanges:

• a queue is a publisher-consumer style messaging infrastructure where publishers write messages
into the queue and consumers read (and consume) messages from the queue; optionally, a pub-
lisher can also register a callback queue to be notified when the consumer has finished processing
the message (one-to-one messaging)

• an exchange is a publish-subscribe style messaging infrastructure where consumers can register
for certain messages, and producers then send their message to all registered consumers (one-to-
many messaging)

The MICO platform uses both styles of messaging, albeit for different purposes:

• service queues: each analyser service sets up its own queue when registering with the MICO plat-
form; this queue is used to notify the analyser service that a new content part has to be analysed;
when several implementations of the same analyser are running (e.g. in load balancing), messages
are consumed first-come first-serve, i.e. the first available analyser will carry out the task

• service registration and discovery exchanges: the broker sets up a registry exchange and a discov-
ery exchange; whenever a new analyser service registers with the platform, it notifies all MICO
brokers through the registry exchange; whenever a new MICO broker is started, it sends out a
service discovery request on the discovery exchange

• processing callback queues: the broker, when processing a new content item, notifies analysers
through their queues according to its execution plan; for each call to a service, the broker sets up
a temporary callback queue on which it is notified when the processing is finished

• input/output queues: these queues are used to notify the broker that a new content item is available
(input), and by the broker to notify that processing a content item is finished (output)

An example of the list of queues of a running MICO platform is given in Figure 2. Queues starting
with ”amq” are auto-generated temporary queues used as service callbacks. Note in particular the con-
tent input, content output, and service notification queues for the services ”ocr-jpeg”, ”ocr-png” and
”wordcount”.

4.4.2 Messaging Protocol

All messages exchanged in the MICO platform use the Protocol Buffer (Protobuf)7 binary format. Pro-
tobuf allows a language independent definition of message schemas that is then compiled into a highly
efficient binary representation. The following three message types are currently used by the system:

• registration event: sent by a service to the service registration exchange when it starts up

6http://www.rabbitmq.com/
7https://code.google.com/p/protobuf/

11

Figure 2 RabbitMQ queue overview for the MICO platform.

message R e g i s t r a t i o n E v e n t {
r e q u i r e d s t r i n g s e r v i c e I d = 1 ; / / s e r v i c e i d e n t i f i e r o f s e r v i c e
r e q u i r e d s t r i n g queueName = 2 ; / / i n p u t queue name used by s e r v i c e
r e q u i r e d s t r i n g p r o v i d e s = 3 ; / / t y p e o f o u t p u t t h i s s e r v i c e p r o v i d e s
r e q u i r e d s t r i n g r e q u i r e s = 4 ; / / t y p e o f i n p u t t h i s s e r v i c e p r o v i d e s
o p t i o n a l I m p l e m e n t a t i o n l a n g u a g e = 5 [d e f a u l t = JAVA] ; / / o r CPP f o r C++
o p t i o n a l R e g i s t r a t i o n T y p e t y p e = 6 [d e f a u l t = REGISTER] ; / / o r UNREGISTER

}

• analyis event: sent by the broker to the next service in the execution plan, and sent by an analysis
service to the broker to signal that it has created a new content part as result; can be sent multiple
times, e.g. when a service generates several content parts as result
message A n a l y s i s E v e n t {

r e q u i r e d s t r i n g s e r v i c e I d = 1 ; / / i d e n t i f i e r o f t h e s e r v i c e g e n e r a t i n g t h e e v e n t
r e q u i r e d s t r i n g c o n t e n t I t e m U r i = 2 ; / / URI of t h e c o n t e n t i t em b e i n g p r o c e s s e d
o p t i o n a l s t r i n g o b j e c t U r i = 3 ; / / URI of t h e c o n t e n t p a r t b e i n g p r o c e s s e d

}

• content item event: notifies the broker that a new content item is available; also used for signaling
that processing a content item has been finished:
message C o n t e n t E v e n t {

r e q u i r e d s t r i n g c o n t e n t I t e m U r i = 1 ;
}

The complete definition of all messages can be found in the source code file
platform/api/shared/event/Event.proto8.

8https://bitbucket.org/mico-project/platform/src/1.0.0/api/shared/event/Event.proto

12

Figure 3 MICO Broker user interface with dependency graph and content item processing status.

4.5 MICO Broker

The current prototypical implementation of the MICO broker offers the following main functionalities:

• service registration: whenever an analysis service connects or disconnects from the platform, the
MICO broker is notified; at any point in time, it knows about the state and availability of analysis
services; it also builds up a static dependency graph based on the requires/provides specifications
of the services, which it uses as simple execution plan

• service orchestration: when a new content item has been created, the MICO broker is notified and
starts executing the different analysis steps based on a simple execution plan; it does so by starting
at an initial state in the dependency graph that matches with the type of one of the content parts
of the created content item and then notifies analysers in turn along the edges of the dependency
graph until no further transition is possible

• debugging user interface: the broker also provides a simple user interface for development pur-
poses which allows developers to get some insight about the analysis process; it shows the de-
pendency graph, the current processing state of content items, and allows inspecting the results of
analysis; it also allows creating and uploading new content items

Figure 3 shows a screenshot of the main MICO broker user interface. Note that three services have been
registered (OCR-png, OCR-jpeg and wordcount) and how the dependency graph is constructed. At the
bottom of the screenshot you can also see that one content item has been processed.

13

Figure 4 MICO Broker user interface with content item inspection.

Figure 4 shows the inspection page for a content item. Developers get detailed insights about the
different content parts, can download the binary content and display the generated metadata.

14

5 System Usage instructions how to
setup the system, from
README; tools

5.1 Building from the source

Build the MICO Platform from the source code is only strictly required for those extending or patching
it. This section is part of this deliverable to document the process. Therefore, for proceeding with a
regular installation, please continue at Section 5.3 for further details.

The source code of the platform can be obtained from the project account at bitbucket9:

Listing 4: Cloning the git repository with the platform source code

$ g i t c l o n e h t t p s : / / b i t b u c k e t . o rg / mico�p r o j e c t / p l a t f o r m . g i t mico�p l a t f o r m

The API is built using the standard tools for the respective environment:

5.1.1 Building (Java)

The complete platform is built using Maven10, including the server components (Marmotta and Bro-
ker) as well as the Java bindings. To build and install the current development version, the following
command needs to be executed:

Listing 5: Using Maven to build the platform

$ mvn c l e a n i n s t a l l

This command will compile all Java source code, run existing unit tests, build JAR artifacts, and
install them in the local Maven repository. Binary Maven artifacts are periodically published to our
development repositories11, so they can be directly used from dependant projects (e.g., analyzers):

Listing 6: Maven repositories configuration

< r e p o s i t o r i e s>
. . .
< r e p o s i t o r y>

<i d>mico . p u b l i c< / i d>
<name>MICO Maven Proxy< / name>
<u r l>h t t p : / / mvn . mico�p r o j e c t . eu / c o n t e n t / g ro up s / p u b l i c /< / u r l>
< r e l e a s e s><e n a b l e d> t r u e< / e n a b l e d>< / r e l e a s e s>
<s n a p s h o t s><e n a b l e d> t r u e< / e n a b l e d>< / s n a p s h o t s>

< / r e p o s i t o r y>
< / r e p o s i t o r i e s>

5.1.2 Building (C++)

The C++ bindings of the platform are built using the CMake12, where the following steps need to be
done (each step corresponds with the same number of line at Listing 7:

9http://code.mico-project.eu/platform
10http://maven.apache.org
11http://mvn.mico-project.eu
12http://www.cmake.org

15

1. Configure a build directory and create the Makefiles necessary to build the platform.

2. In case configuration succeeds (i.e. all dependencies are found), the C++ libraries can be built
and automatically tested using GNU Make.

3. Optionally create a complete API documentation of the MICO Platform API at the api/c++/doc
directory.

4. Finally install the C++ libraries and headers to the predefined prefix.

Note that the C++ version has a number of library dependencies that are checked when calling CMake.
Most notably, these are cmake itself, doxygen, protobuf, boost, libexpat, libcurl, libtesseract, libmagic,
libdaemon.

Listing 7: Build with CMake

1 $ cmake a p i / c++
2 $ make
3 $ make i n s t a l l

5.2 Packaging

The distributed service-oriented architecture proposed [SF14] is implemented as a UNIX-based system,
where components are independent POSIX processes [BW01]. A revised version of the architecture
deliverable will be published as D6.1.2 providing much more detail.

More precisely the MICO Platform is implemented as a Debian system [Mur94]. Each server com-
ponent of the platform is provided as a package for that system (.deb), taking advantage of the advanced
packaging system Debian offers for managing versions, dependencies, etc.

Listing 8: Package Debian components with Maven

$ mvn package �Pdeb ian

Currently there are two complentary method to package the components: The Java components
(Marmotta and Broker) are packaged, as Listing 8 show, with a special Maven profile using jdeb13,
a cross-platform Maven plugins. While all the remaining components make use of regular Debian
Development tools14. Packages are periodically published to the project Debian repository15.

5.3 Installation

A complete binary installation for development can be setup using custom-built packages that we offer
in the MICO Debian repository. For those who need to setup a development server, this is the easiest
way to get up and running.

This setup is also provided as a preinstalled VirtualBox16 image for the members of the consortium.
We are currently working on providing a more easy-to-use vagrant17 version of this image.

13http://github.com/tcurdt/jdeb
14http://www.debian.org/doc/manuals/maint-guide/build.en.html
15http://apt.mico-project.eu
16https://www.virtualbox.org
17https://www.vagrantup.com/

16

To install these packages, first setup a basic installation of Debian Jessie18 (currently in testing).
Regarding the requirements of the MICO Platform, a plain installation is sufficient, i.e. no special
package preselection is needed.

Listing 9: Repository configuration

deb h t t p : / / a p t . mico�p r o j e c t . eu / mico main non�f r e e c o n t r i b

The first step is to add the MICO Repository (Listing 9 to the /etc/apt/sources.list file. All
packages are signed with a with a gpg-key (Key-ID: AD261C57). To avoid warnings by apt-get either
install the mico-apt-key package or manually fetch the key 19 as Listing 10 shows.

Listing 10: GPG key installation

wget �O� h t t p : / / a p t . mico�p r o j e c t . eu / ap t�r ep o . key | sudo ap t�key add �

The you can already proceed to install the MICO platform, fetching the most recent package list and
install the package mico-platform executing the following commands:

Listing 11: Platform installation

apt�g e t u p d a t e
ap t�g e t i n s t a l l mico�p l a t f o r m

The installation will interactively ask you a few questions regarding a MICO user to be created and
the hostname to use for accessing the system. Please take your time to carefully configure these values.
To see how to interact with the MICO Platform please refer to Section 5.4.

5.4 Usage

The MICO platform installation comes with a single entry-point at http://<host>/ for accessing the
Web interfaces of those services that provide it.

By default installation comes with some sample services, implemented in C++, that are used for
demonstrating the platform functionality. For instance, Listing 12 shows a service capable of transform-
ing text contained in JPEG and PNG images into plain text using the Tesseract OCR library20. Any
content can be injected to the platform, which will orchestrate a extraction process among all registered
extractors, whic a command like the one shown by Listing 13; the call will inject a single content item,
with a content part for each file given as argument.

Listing 12: Example how to extract text with Tesseract OCR

m i c o o c r s e r v i c e <hos t> <use r> <password>

Listing 13: Example how to inject content to the MICO Platform

m i c o i n j e c t <hos t> <use r> <password> < f i l e s . . . >

It should be taken into account that for the moment the integrated MICO Platform is a prototypical
state, where many components are still unstable or missing for some cases.

18https://www.debian.org/releases/jessie/
19http://apt.mico-project.eu/apt-repo.key
20http://tesseract-ocr.googlecode.com

17

6 Perspectives

This version of the MICO platform is a first prototype mainly intended to serve as a platform for the
development of extractors and starting to work on the implementation of the use cases. While the API
should remain mostly stable, several components are only proof-of-concept and might be replaced in
future versions:

6.1 MICO Broker: Service Orchestration

The current version of the MICO broker implements a simplistic service orchestration that uses a static
execution plan for all analysis tasks and will not work well with cyclic dependencies, missing tran-
sitions, unavailable services, etc. Future versions will implement a much more sophisticated service
orchestration as described in D6.1.1 [SF14] and developed in work package WP2. Future versions need
to take into account:

• individual execution plans for each content item, based on available input data and required output
type, as well as available analysis services and their quality and costs

• cyclic dependencies, alternative execution paths, and missing transitions

• user interaction in the analysis process, e.g. to confirm certain results and thus improve the quality
and reliability of the overall annotations

6.2 MICO API: Vocabulary API

The current implementation of the MICO API had to be done without knowledge of the RDF schemas
that would be used for representing annotations and analysis results (work package WP3). For this
reason, it currently only offers generic low-level metadata support where the schema to be used is
completely up to the developer. While metadata will still be represented in RDF, this makes it more
difficult to integrate and combine the results of different analysers and let one analyser build on another.
The next version of the MICO API will therefore provide specific high-level support for the schemas and
vocabularies developed in WP3 so developers need not be concerned about working with RDF directly.

6.3 MICO Persistence: More Elaborate Storage

Using FTP to store the binary content of content parts is only a least common denominator and therefore
only a temporary solution. Once it is known how the use cases will be able to provide their binary con-
tent, we will implement a more powerful storage system, e.g. based on technology previously developed
by MICO partner Fraunhofer for this purpose. The programming API will remain unchanged, so that
existing extractors need not be adapted to a different storage system.

18

References

[BW01] Alan Burns and Andrew J Wellings. Real-time systems and programming languages: Ada
95, real-time Java, and real-time POSIX. Pearson Education, 2001.

[DCT12] DCMI Metadata Terms. Technical report, Dublin Core Metadata Initiative, 2012.

[FWCT13] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias Torres. Sparql
1.1 protocol. Recommendation, W3C, March 2013.

[KSS+14] Thomas Kurz, Sebastian Schaffert, Kai Schlegel, Florian Stegmaier, and Harald Kosch.
Sparql-mm-extending sparql to media fragments. In The Semantic Web: ESWC 2014 Satel-
lite Events, 2014.

[Mur94] Ian Murdock. Overview of the debian gnu/linux system. Linux Journal, 1994(6es):15,
1994.

[PBT+] Valentina Presutti, Eva Blomqvist, Raphael Troncy, Harald Sack, Ioannis Papadakis, and
Anna Tordai. The Semantic Web: ESWC 2014 Satellite Events. Springer.

[PR85] JB Postel and J Reynolds. Rfc959: File transfer protocol. Network Information Center,
1985.

[SAM14] Steve Speicher, John Arwe, and Ashok Malhotra. Linked data platform 1.0. Last call
working draft, W3C, September 2014.

[SF14] Sebastian Schaffert and Sergio Fernández. D6.1.1 System Architecture and Development
Guidelines. Deliverable, MICO, 2014.

19

