
Enabling Technology Modules: Final Version

Responsible editor(s): Patrick Aichroth, Johanna Björklund,
Emanuel Berndl, Thomas Kurz, Thomas Köllmer

Volume 5

Volume 5
Enabling Technology Modules: Final Version
Patrick Aichroth, Johanna Björklund, Emanuel Berndl, Thomas Kurz, Thomas Köllmer

About the project: MICO is a research project project partially funded by the European Commission 7th
Framework Programme (grant agreement no: 610480). It aims to provide cross-media analysis solutions for
online multimedia producers. MICO will develop models, standards and software tools to jointly analyse,
query and retrieve information out of connected and related media objects (text, image, audio, video, of-
fice documents) to provide better information extraction results for more relevant search and information
discovery.

Abstract: This Technical Report summarizes the state of the art in cross-media analysis, metadata pub-
lishing, querying and recommendations. It is a joint outcome of work packages WP2, WP3, WP4 and WP5,
and serves as entry point and reference for technologies that are relevant to the MICO framework and the
two MICO use cases.

Projekt Coordinator: John Pereira BA
Publisher: Salzburg Research Forschungsgesellschaft mbH, Salzburg, Austria
Editor of the series: Thomas Kurz | Contact: thomas.kurz@salzburgresearch.at
Issue: December, 2016 | Grafik Design: Daniela Gnad
ISBN 978-3-902448-47-7

© MICO 2016
Images are taken from the Zooniverse crowdsourcing project Plankton Portal that will apply
MICO technology to better analyse the multimedia content. https://www.zooniverse.org

Disclaimer: The MICO project is funded with support of the European Commission. This document
reflects the views only of the authors, and the European Commission is not liable for any use that may be
made of the information contained herein.

Terms of use: This work is licensed under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License, http://creativecommons.org/licenses/by-nc-sa/3.0/

Online: A digital version of the handbook can be freely downloaded at
http://www.mico-project.eu/technical-reports/

MICO (Media in Context) is a research project partially funded by the European
Commission 7th Framework Programme (grant agreement no: 610480).

Patrick Aichroth is working for Fraunhofer IDMT and focusing on user-centric, incen-
tive-oriented solutions to the“copyright dilemma”, content distribution and media secu-
rity. Since 2006, he is head of the media distribution and security research group. Within
MICO, he is coordinating FHG activities, and is involved especially in requirements meth-
odology and gathering, related media extractor planning, and system design and imple-
mentation aspects related to broker, media extraction and storage, and security.

Johanna Björklund is senior lecturer at the Department of Computing Science at Umeå
University, and founder and COO of CodeMill, an IT-consultancy company specializing
in media asset management (MAM). Her scientific work focuses on structured methods
for text classification. In MICO she is leading the activities around a multi-lingual speech-
to-text component.

Emanuel Berndl is a PhD Student at the University of Passau. He is mainly working on
Semantic Web, Software Engineering and modern Web Technologies. In the MICO project
he is contributing to the multimedia annotation model, which also builds the core of his
research interests.

Thomas Kurz is Researcher at the Knowledge and Media Technologies group of Salz-
burg Research. His research interests are Semantic Web technologies in combination
with multimedia, human-computer interaction regarding to RDF metadata, and Semantic
Search. In Mico he focuses on semantic multimedia retrieval and coordinates the overall
scientific work.

Thomas Köllmer is working for Fraunhofer IDMT within the media distribution and se-
curity research group, and as a researcher inside the media technology department of
the Ilmenau University of Technology. He is working on metadata modelling, the objective
assessment of recommendation quality and the development of novel recommendation
methods. In MICO, he focusses on developing and integrating methods for cross media
recommendation.

Responsible editors

Many different authors from all partners have contributed to this document.
The individual authors in alphabetic order are:

•	Patrick Aichroth (FhG),
•	Johanna Björklund (UMU),
•	Emanuel Berndl (University of Passau, UP),
•	Alex Bowyer (University of Oxford),
•	Luca Cuccovillo (FhG),
•	Thomas Kurz (Salzburg Research Forschungsgesellschaft mbH, SRFG),
•	Thomas Köllmer (FhG),
•	Marcel Sieland (FhG),
•	Christian Weigel (FhG),
•	Thomas Weißgerber (UP)

Responsible authors

MICO – Volume

Volume 1

State of the Art in Cross-Media Analysis, Metadata Publishing, Querying and
Recommendations
Patrick Aichroth, Johanna Björklund, Florian Stegmaier, Thomas Kurz, Grant Miller

ISBN 978-3-902448-43-9

Volume 2

Specifications and Models for Cross-Media Extraction, Metadata Publishing,
Querying and Recommendations: Version I
Patrick Aichroth, Henrik Björklund, Johanna Björklund, Kai Schlegel, Thomas Kurz,
Grant Miller

ISBN 978-3-902448-44-6

Volume 3

Enabling Technology Modules: Version I
Patrick Aichroth, Henrik Björklund, Johanna Björklund, Kai Schlegel, Thomas Kurz,
Antonio Perez

ISBN 978-3-902448-45-3

Volume 4

Specifications and Models for Cross-Media Extraction, Metadata Publishing,
Querying and Recommendations: Version II
Patrick Aichroth, Johanna Björklund, Kai Schlegel, Thomas Kurz, Thomas Köllmer

ISBN 978-3-902448-46-0

Volume 5

Enabling Technology Modules: Final Version
Patrick Aichroth, Johanna Björklund, Emanuel Berndl, Thomas Kurz, Thomas Köllmer

ISBN 978-3-902448-47-7

Contents
1 Executive Summary 2

2 Enabling Technology Modules for Extractors 3
2.1 Visual Extractors Status . 3

2.1.1 Object and Animal Detection – OAD (TE-202) – Update 3
2.2 Audio Extractors Status . 3

2.2.1 Automatic Speech Recognition based on Kaldi (TE-214) – Update 3
2.2.2 Automatic Speech Recognition based on Microsoft’s Bing Voice Recognition

(TE-214) – New . 5
2.3 Textual Extractors Status . 7

2.3.1 OpenNLP Text Classification Extractor (TE–213) – New 7
2.3.2 Competence Classification (TE–213) – New 10
2.3.3 Text Language Detection Extractor – New . 12
2.3.4 OpenNLP Named Entity Recognition (TE-220) – New 15
2.3.5 Redlink Text Analysis Extractor (TE-213, TE-220) – Update 16

2.4 Multilingual support . 18
2.5 Final extractor list . 19
2.6 Extractor implementation guidelines – Broker v3 . 19

2.6.1 Extractor API Overview . 19
2.6.2 Environment and Build . 20
2.6.3 OS Requirements . 20
2.6.4 C++ Extractors . 20
2.6.5 C++ Development Build . 21
2.6.6 Implementing your own C++ Extractor Service 22
2.6.7 Semantic Annotation via Anno4CPP . 25
2.6.8 Java Extractors . 26

3 Enabling Technology Modules for Extractor Orchestration 27
3.1 Introduction . 27
3.2 Broker Design and Implementation . 29

3.2.1 Principles . 29
3.2.2 Broker Components . 30
3.2.3 Extractor Lifecyle . 30
3.2.4 Broker Model . 31

3.3 Extractor registration service . 33
3.3.1 Example registration XML . 33
3.3.2 REST API . 36

3.4 Workflow Creation . 37
3.4.1 Using the workflow creation tool . 37
3.4.2 Camel Route definition . 40
3.4.3 REST API . 41

3.5 Workflow Execution . 41
3.5.1 Extractor and workflow status information . 42
3.5.2 RabbitMQ Endpoints . 43
3.5.3 REST API methods for item creation and injection 43

iii

3.6 Content Set, Job and Workflow Management . 44
3.6.1 Workflow Management: REST API . 44
3.6.2 Content Manager: REST API . 44
3.6.3 Job Manager . 46

3.7 Summary and Outlook . 47

4 Enabling Technology Modules for Cross-media Publishing 48
4.1 Anno4j - An Object to RDF Mapping . 48

4.1.1 Anno4j Persistence . 49
4.1.2 Anno4j Partial Behaviour . 52
4.1.3 Anno4j Querying . 53
4.1.4 Anno4j Extended Features . 56

4.2 Anno4CPP - C++ Proxy for Anno4j . 60
4.3 MMM Extension - Extractor Model . 60
4.4 Conclusion and Outlook . 63

4.4.1 RDF Schema Enhanced Object-RDF-Mapping 63
4.4.2 Validation of Created Metadata . 65
4.4.3 Visualisation of Queried RDF Results . 65

5 Enabling Technology Modules for Cross-media Querying 69
5.1 SPARQL-MM Extensions . 69
5.2 Linked Data Information Retrieval . 75

5.2.1 Theoretical Foundations . 75
5.2.2 Syntax Definition . 78
5.2.3 Extensions . 81
5.2.4 Implementations . 82
5.2.5 Uses Cases . 82
5.2.6 Future Work . 84

5.3 Semantic Media Similarity . 85
5.3.1 Semantic Media Similarity . 85
5.3.2 Further Work . 87

6 Enabling Technology Modules for Cross-media Recommendations 88
6.1 Recommendation Approaches . 88

6.1.1 Collaborative Filtering . 88
6.1.2 Content Based recommendation . 89

6.2 Platform Integration . 91
6.3 Recommendation Engine & Demo Code . 95

6.3.1 Installing the recommendation API . 95
6.3.2 Installing Prediction.io . 95
6.3.3 Running the WP5 Demo application . 97

6.4 Deviations from Report V3 - Enabling Technology Modules: Initial Version 98
6.5 MICO Recommender System – Summary and Outlook 98

iv

List of Figures

1 MICO API components overview . 20
2 example MP4 video analysis workflow in MICO . 27
3 MICO broker components . 30
4 MICO extractor lifecylcle . 31
5 MICO broker model overview . 32
6 A preliminary extractor workflow . 38
7 Configuration of extractor run-time parameters . 38
8 A correctly configured extractor workflow . 39
9 An extractor workflow with one missing connection 39
10 Camel route example . 40
11 MICO workflow execution with dynamic routing . 42
12 Exemplary RDF graph for an animal detection MICO Part annotation. This respective

result indicates that a panda was detected with a confidence of 0.85 on the given picture. 50
13 Graph-based visualisation of the LDPath expression “mmm:hasBody[is-a

mmm:AnimalDetectionBody]”. 56
14 Graph-based visualisation of the LDPath expression “mmm:hasBody/rdf:value”. . . . 56
15 Graph-based visualisation of the LDPath expression “mmm:hasTarget/mmm:hasSe-

lector/rdf:value”, which is compared to end with the String “200,300”. 57
16 Extension to the ORM mapping of Anno4j. 59
17 Overview of the proxy generation process for anno4cpp. 61
18 Exemplary RDF output for an audio demux extractor. 64
19 Screenshot of the Baloon Synopsis Plugin, adapted to animal detection use case, show-

ing item query level . 66
20 Screenshot of the Baloon Synopsis Plugin, adapted to animal detection use case, show-

ing part query level . 67
21 Exemplary D3 RDF graph visualisation. Picture adapted from http://flowingdata.

com/2012/08/02/how-to-make-an-interactive-network-visualization/. . . 68
22 Wordlift recommendation widget for Greenpeace data 90
23 Examples of favourite images (subjects ASG001p8rj, ASG001s4b8, and ASG001s5my) 91
24 Overview of the MICO recommendation architecture. 93
25 Recommendation repository structure . 94

List of Tables

1 TE-214 implementation: ASR implementation with the Kaldi library 4
2 TE-214 implementation: ASR implementation with Microsoft’s Bing Voice Recogni-

tion Service . 7
3 The OpenNLP Text Classification Extractor implementation (TE-213) 9
4 Competence Classification Extractor (TE-213) . 12
5 The OpenNLP Text Language Detection Extractor implementation (TE-213) 14
6 The OpenNLP Named Entity Recognition Extractor implementation (TE-220) 15
7 Text Analysis Extractor based on the Redlink Analysis Service (TE-213 and TE-220) . 17
8 Overview of all MICO extractors. 19

v

http://flowingdata.com/2012/08/02/how-to-make-an-interactive-network-visualization/
http://flowingdata.com/2012/08/02/how-to-make-an-interactive-network-visualization/

9 Broker inject API. Please see http://mico-project.bitbucket.org/api/rest/
?url=broker.json for a detailed API documentation and all parameters. On a de-
fault configured MICO platform, the endpoints are available as a sub resource of
http://mico-platform:8080/broker. 43

10 Predefined Namespaces for a QueryService . 55
11 SPARQL-MM Aggregation Functions . 72
12 SPARQL-MM Relation Functions . 73
13 SPARQL-MM Accessor Functions . 74
14 Requirements for Multimedia Query Languages . 85
15 API Overview. Please see http://mico-project.bitbucket.org/api/rest/

?url=reco.json for a detailed API documentation and all parameters. On a de-
fault configured MICO platform, the endpoints are available as a sub resource of
http://mico-platform:8080/showcase-webapp. 92

16 Summary of the technology enablers implemented within this work package. Sec-
tion 5.7 of report V4 (final specification) gives a more detailed description. 98

1

http://mico-project.bitbucket.org/api/rest/?url=broker.json
http://mico-project.bitbucket.org/api/rest/?url=broker.json
http://mico-project.bitbucket.org/api/rest/?url=reco.json
http://mico-project.bitbucket.org/api/rest/?url=reco.json

1 Executive Summary

This document provides the final description of the MICO technology enablers from WP2, WP3, WP4
and WP5, including several system domain updates (model / persistence, broker, querying, and recom-
mendation framework) since Year 2.

Section 2 provides the relevant updates regarding MICO extractors and their implementation status
with respect to the specifications of (Mico Technical Report V4) related to linguistic analysis, including
diarization, ASR, text and competence classification, language detection, and NER. It also includes a
description of two new extractors for animal vs. blank image distinction in Year 3. Finally, Section 2
describes how the MICO extractor API evolved since the MICO Technical Report Volume 3, and how
to implement a MICO extractor.

Section 3 describes the MICO broker v3 for extractor orchestration, which represents a major up-
date over v1 provided with report V3, and also over v2 that was provided earlier in Year 3. The section
outlines requirements and design principles, describes the broker data model, provides a component
overview, and presents the registration service and its interplay with extractors. It includes an expla-
nation of how semi-automatic creation and workflow execution has been implemented. Section 3 also
provides a description of workflow management tools that were not planned for Year 3, and are not part
of and not needed to use the platform, but nonetheless improve usability.

Section 4 provides an updated description of Anno4j, the Object-to-RDF ORM mapping for MICO
that allows the creation of MICO or generic W3C Web Annotations with plain Java objects. Anno4j
was originally introduced in report V3, and has been significantly extended since then.

Section 5 updates the description of the query language extension SPARQL-MM to version 2.0. It
then continues to describe how LDPath, a simple path-based query language, similar to XPath, can be
used for simplified querying and data retrieval. LDPath is here provided as an alternative to SPARQL-
MM, which was used in earlier reports. The conclusion of Section 5 presents a solution approach to the
problem of Semantic Media Similarity.

Section 6 describes the MICO recommendation framework, including status and usage instructions
for the related components, and a description of the recommendation API and respective demo code.

2

2 Enabling Technology Modules for Extractors

This section provides updates on the MICO extractors and their implementation status with respect to
the specifications of report V4. Several of these concern linguistic analysis, e.g., diarization, automatic
speech recognition, sentiment analysis, language detection, and named-entity recognition. We also
describe how the MICO extractor API has evolved since the MICO Technical Report Volume 3, and
explain how to implement a MICO extractor.

2.1 Visual Extractors Status

There have been relatively few functional updates to the video and image related extractors since the
MICO Technical Report Volume 4. Implementation efforts have mostly concerned bug fixes and the
adaptation to the new C++ and Java APIs (see Section 2.6.1). However, as planned in Volume 3, there
have been updates to the animal detection extractor as well as the adaptation to Broker v3 in the final
year of the project.

2.1.1 Object and Animal Detection – OAD (TE-202) – Update

As planned in report V4 we have extended the animal detector using DPMs (Deformable Part Mod-
els [Fel+10]) for detection. Yet some experiments showed that these hand-crafted features still have
difficulties with the demanding image data set of Snapshot Serengeti. Therefore we decided to add
another implementation of the animal detection service that relies on Deep Neural Networks. We
chose the very recently published YOLO framework [Red+16] for implementation and trained our own
model for 10 species based on the data used for HoG based and DPM training. We have also got
approx. 10.000 additional annotations done by the Zooniverse community in the Snapshot Serengeti
CV project that was set up during MICO (https://www.zooniverse.org/projects/alexbfree/
computer-vision-serengeti/). Unfortunately due to time constraints this valuable data could not
make it into the training data set. Yet, we will use it for a final evaluation of the detection performance
and perhaps a re-training.

Due to the additional efforts for integration of a third animal detector we decided to reduce efforts
on the alternative approaches for blank image detection (background model etc.). We derived inter-
esting statistics about the Snapshot Serengeti sets and applied experimental algorithms (e.g., day/night
detectors, background models) but these research results are in a too unfinished state in order to create
a MICO extractor out of it. However, we are looking forward that the DNN approach for detection also
helps in the blank image detection task.

2.2 Audio Extractors Status

The audio extractors include (i) diarization to segment audio data into manageable chunks, (ii) auto-
matic speech recognition to transcribe audio data into text, and (iii) auxiliary extractors to store the
transcription as XML. The work done in Year 3 of the project has focused on providing an alternative
to Kaldi by wrapping the Microsoft Bing Speech service, and by improving the multilingual support by
training new models for Kaldi.

2.2.1 Automatic Speech Recognition based on Kaldi (TE-214) – Update

Automatic speech recognition (ASR) takes as input an audio stream with speech and outputs a transcrip-
tion as plain text. ASR is useful in itself, for example, to generate subtitles or make content indexable via

3

https://www.zooniverse.org/projects/alexbfree/computer-vision-serengeti/
https://www.zooniverse.org/projects/alexbfree/computer-vision-serengeti/

text-driven approaches. ASR is also needed as an intermediate step towards sentiment analysis, named
entity recognition and topic classification. In the context of the MICO Showcases, ASR is relevant for
the News Media scenario (US-18), to make videos searchable through keywords.

In the initial phase of the MICO project, we evaluated several open-source and proprietary ASR
libraries. The outcome of the experiments are published on the project’s webpage1. Given the results,
we decided to base MICO’s ASR capabilities on the C++ library Kaldi, as it outperformed the other
open-source alternatives and was at the level of some of the commercial systems. Kaldi also has the
advantages of being modern and extensible, and having a business-friendly license.

Table 1 TE-214 implementation: ASR implementation with the Kaldi library

Name mico-extractor-speech-to-text (http://kaldi-asr.org/)

Original license Apache license, version 2.0

MICO integration license Apache license, version 2.0

External dependencies Kaldi, Boost, ATLAS, BLAS, gfortran3

Input data Diarization segment information (XML) and corresponding audio file
(WAV).)

Output data Time-stamped word transcriptions (XML)

RDF persistence Persistence into the MICO data model via a separate Java extractor
converting each time-stamped word into a content part.

Internal Parameters SAMPLING_RATE: 8000, MAX_SEGMENT_SIZE_SEC: 30 (used to
break too large segments down).

Additional requirements A language model must be provided (default installed with Debian
package)

Comments: ASR is still in its infancy, and requires time and effort to mature. Leading commercial
systems achieve an accuracy of approx. 85% in the best possible setting, that is, with a single male
speaker working from a manuscript, with no background noise and high-quality audio. Open-source
systems tend to lie 10-15% lower on the same content. Under less favorable circumstances, for example
a typical YouTube clip, the accuracy can easily drop to 50%. Despite these facts, the output can still be
useful to search content by keywords, or to sort it by topic.

Another aspect worth mentioning is that ASR systems are very resource intensive. The language-
models used to represent language typically requires a couple of gigabytes of disk, and the computations
involved are CPU intensive. Future systems will likely have similar requirements, but this will be
mitigated by faster processing kernels, higher parallelization, and lower costs of disk and memory.
Further work with Kaldi should focus on offline transcription with better parallel capabilities. In current

1http://www.mico-project.eu/experiences-from-development-with-open-source-speech-recognition-libraries/

4

tests, the extractor can extract text from speech in about 160 per cent of real time, which gives good
hope of achieving real time transcription with further optimizations and hardware improvements.

The early implementations of the Kaldi extractor suffered from being resource intensive. An effort
to mitigate this was taken and the internal parameters of the Kaldi system and their influence on the
quality of the transcription results was evaluated. Tests on a parameter space of five parameters with
4-8 different values was performed. This gave insight into parameter settings for different purposes
(low error rate, high transcription speed, and so forth). It is advisable to keep the default parameter
settings if the transcription results are needed for text analysis. However, in applications where ’perfect’
transcriptions are not needed (e.g. keyword, topic detection, etc.) there are more effective settings. The
extractor is therefore published together with a list of suggested parameter settings for varying trade-off
levels in speed and accuracy.

2.2.2 Automatic Speech Recognition based on Microsoft’s Bing Voice Recognition (TE-214) –
New

Kaldi is free to use and can be trained for any language, but since the library is still comparatively
new, few high-quality language models exist. To offer a broad language support, we therefore include
an alternative ASR extractor based on Microsoft’s cloud service Bing Voice Recognition. Bing Voice
Recognition currently supports 20 languages, including Italian and Modern Standard Arabic, which are
of particular interest for the MICO use cases. It also shows how existing SaaS solutions can be integrated
into the MICO platform.

The service is accessed through a REST API and returns one recognition result with no partial
results. A sample voice recognition request looks as follows:

POST /recognize? (parameters)
Host: speech.platform.bing.com
Content -Type: audio/wav; samplerate=16000
Authorization: Bearer [Base64 access_token]

(audio data)

The service returns a response in JSON format, the content of which depends on whether the provided
audio led to a successful recognition. If it did, the response may look as follows:

HTTP/1.1 200 OK
Content -Length: XXX
Content -Type: application/json; charset=UTF-8
{

"version":"3.0",
"header":{

"status":"success",
"scenario":"websearch",
"name":"Mc Dermant Autos",
"lexical":"mac dermant autos",
"properties":{

"requestid":"ABDDD97E -171F -4B75 -A491 -A977027B0BC3"
},

"results":[{
Formatted result
"name":"Mc Dermant Autos",

5

The text of what was spoken
"lexical":"mac dermant autos",
"confidence":"0.9442599",
Words that make up the result; a word can include a space if there
isn’t supposed to be a pause between words when speaking them
"tokens":[{

The text in the grammar that matched what was spoken for this token
"token":"mc dermant",
The text of what was spoken for this token
"lexical":"mac dermant",
The IPA pronunciation of this token (I made up M AC DIR MANT;
refer to a real IPA spec for the text of an actual pronunciation)
"pronunciation":"M AC DIR MANT",

},
{

"token":"autos",
"lexical":"autos",
"pronunciation":"OW TOS",

}],
"properties":{

"HIGHCONF":"1"
},

}],
}

}

A failure to recognize the content instead leads to the following reply:

HTTP/1.1 200 OK
Content -Length: XXX
Content -Type: application/json; charset=UTF-8

{
"version":"3.0",
"results":[{}],
"header":{

"status":"error",
"scenario":"websearch",
"properties":{ "requestid":"ABDDD97E -171F -4B75 -A491 -A977027B0BC3",

"FALSERECO":"1"
}

}
}

Comments: When choosing a commercial alternative to Kaldi, we evaluated Microsoft’s and
Google’s speech-recognition services. Both services supported Italian and Arabic, which is a must
for our showcases. Google had the advantages of having a simple API, but the disadvantages of still
being under restricted Beta access, requiring audio in FLAC format (which would involve a conversion
step), the files are restricted to 10-15 seconds, and there is a maximum of 50 requests per day.

The main advantage of Microsoft’s service was that it permits 5000 requests per month free of
charges2; the main disadvantage that it has two APIs (Bing Speech and Bing Voice Recognition), and it

2Larger volumes are available for purchase.

6

Table 2 TE-214 implementation: ASR implementation with Microsoft’s Bing Voice Recognition Ser-
vice

Name mico-extractor-speech-to-text-ms
(https://datamarket.azure.com/dataset/bing/speechrecognition)

Original license Free access, 5000 requests per month, subscription Terms of Use

MICO integration license Apache license, version 2.0

External dependencies Microsoft Azure Cloud platform, active Bing Speech subscription

Input data Audio file (with sample rate 8000 or 16000)

Output data Plain text transcription

RDF persistence Persistence into the MICO data model converting the plain text into a
content part.

External Parameters Locale at startup (en-US default)

is hard to differentiate between them and understand what restrictions apply where. This extractor uses
Bing Voice Recognition, which is the Cloud Beta version of the service. Microsoft’s API also requires
you to set up sessions instead of only using a subscription key, and files are restricted to 10 seconds,
with a maximum of 20 requests per minute for the non-cloud API and an undisclosed limit for the Cloud
API with the guideline of 1 request per second. As the extractor makes only synchronous requests this
limit is not an issue.

All things considered, we decided to use Microsoft’s Bing Voice Recognition. The languages and
locales supported by the Bing Speech API are listed online3 and are supported by the extractor.

2.3 Textual Extractors Status

For textual extractors, we report on the major advances since MICO Technical Report Volume .

2.3.1 OpenNLP Text Classification Extractor (TE–213) – New

This extractor classifies textual content along trained categories. The classification is done by using
Apache OpenNLP’s Document Categorizer (DocCat) functionality implementing a maximum entropy
algorithm4. The extractor requires an OpenNLP Doccat model to be provided as an parameter. In
additional an optional SKOS thesaurus can be provided that maps string names of categories trained for
the model to concept URIs in the thesaurus. For doing so the string names of the categories are mapped
with the skos:notation values defined by the parsed Thesaurus.

The extractor itself requires a plain/text asset to be present in the processed item. It will output a
single fam:TopicClassification and one or more fam:TopicAnnotation for actual categories the processed

3https://www.microsoft.com/cognitive-services/en-us/speech-api/documentation/overview
4https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#opennlp.ml.maxent

7

http://opennlp.apache.org/
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#tools.doccat
https://opennlp.apache.org/documentation/1.6.0/manual/opennlp.html#opennlp.ml.maxent

text was assigned to.
For the detailed definition of those annotation please see the Fusepool Annotation Modell5. The

following listing shows an annotation result of a classification result processing a text with a model
trained for two categories detecting competence and incompetence.

@prefix xsd: <http://www.w3.org/2001/ XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#> .
@prefix dc: <http://purl.org/dc/elements /1.1/> .
@prefix fam: <http://vocab.fusepool.info/fam#> .
@prefix mmm: <http://www.mico -project.eu/ns/mmm/2.0/schema#> .
@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix compclass: <http://www.mico -project.eu/ns/compclass /1.0/schema#> .
@prefix example: <http://www.example.org/mico/competenceClassification#> .

test:topic -classification -1 a fam:TopicClassification ;
fam:classification -scheme compclass:CompetenceClassificationScheme ;
fam:extracted -from test:item1 ;
oa:item test:topic -annotation -2 , test:topic -annotation -1 .

test:topic -annotation -2 a fam:TopicAnnotation ;
fam:confidence "0.2823413046977258"^^xsd:double ;
fam:extracted -from test:item1 ;
fam:topic -label "Kompetent"@de , "Competent"@en ;
fam:topic -reference compclass:Competent .

test:topic -annotation -1 a fam:TopicAnnotation;
fam:confidence "0.7176586953022742"^^xsd:double ;
fam:extracted -from test:item1 ;
fam:topic -label "Inkompetent"@de , "Incompetent"@en ;
fam:topic -reference compclass:Incompetent .

2.3.1.1 Specific comments

Performance: OpenNLP holds NLP models in memory. Using this Extractor will require suffi-
cient memory for loading all configured models in memory. The memory required by a OpenNLP
Doccat model depends on the number of categories and also on the size of the trainings set. Memory is
expected to be below 100 MByte of RAM for most use cases. OpenNLP supports multi-threading what
means that multiple concurrent requests can be processed on different CPU cores. Scaling depends
therefore on the number and speed of available CPU cores.

Output: Like all MICO NLP extractors, this extractor creates RDF annotations according to the MICO
metadata model v2 and the Fusepool Annotation Model. In particular, it creates fam:TextClassification
and fam:TopicAnnotation for representing the classification and assigned categories. Note that the
extractor will only create a single classification for the whole text/plain content.

5https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.
md

8

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md

Table 3 The OpenNLP Text Classification Extractor implementation (TE-213)

Name MICO OpenNLP Text Classification Extractor

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies This Extractor is based upon the OpenNLP Doccat (Document Cate-
gorizer) functionality.

Input data Plain text originating from written text or from speech to text transcod-
ing

Output data RDF

RDF persistence Web annotation based annotations as defined by the MICO metadata
model v2.0 with a single TopicClassification and possible multiple
TopicAnnotation as defined by the Fusepool Annotation Modell6

External Parameters none

Internal Parameters The Extractor requires an OpenNLP Doccat model to be configured.
Optionally it can be configured with a SKOS thesaurus that maps string
names of the Doccat model to Concepts of the thesaurus.

9

2.3.2 Competence Classification (TE–213) – New

The extractor classifies parsed text along the competence for the author. This extractor uses the Open
NLP Document classification extractor configured with a model and thesaurus configured for compe-
tence classification. Its main usage within MICO is to classify user comments in Serengeti Snapshots
according to the competence, or skill level, of a user.

For the training of a competence classification we extracted a (denormalized) view over the Snapshot
Serengeti user data with about 100,000 entries, each containing the following fields:

1. userID – this allows the user to be uniquely identified, and that user comments to be collected
together.

2. number of images annotated by this user – this defines how active a user is
3. percentage [0..1] of correctly annotated images – this gives a good estimate about the expertise

of the user, especially for very active users. This is less useful for users with very few annotated
images. (Most Snapshot Serengeti users leave few or no comments)

4. user comment – the body of the user comment itself

To train a categorization model one needs to create a training set. Typically, this would be done by
manually classifying user comments. To skip the time consuming manual annotation, the given data
were analyzed using Open Refine. Based on this analysis a set of rules where established to classify
comments into the following two categories

1. COMP (competent)
2. INCOMP (incompetent)

Definitions:

• ln-anno-img := ln(1+column2): logarithm over the number of annotated images
• cor-anno := column3: percentage of correctly annotated images
• q-words := A list of words indicating a question (‘¿, ‘who‘, ‘what‘, ‘why‘, ‘may‘, ‘can’t‘, ‘can

not‘)

Rules:

1. GLOBAL: only comments with >= 3 tokens are considered
2. INCOMP: ‘ln-anno-img >= 2‘ and ‘ln-anno-img <= 5‘ — Comments of Users that have only

some annotated Images are considered as incompetent.
3. INCOMP: ‘ln-anno-img > 5‘ and ‘cor-anno < 0.82‘ — Comments of Users 100 or more annotated

images but a low percentage of correctly annotated images are considered as incompetent.
4. INCOMP: ‘ln-anno-img > 5‘ and ‘ln-anno-img <= 9‘ and ‘cor-anno >= 0.82‘ and ‘cor-anno <=

0.85‘ and contains ‘q-words‘ — Comments of users with an average amount of annotated im-
ages and an average percentage of correctly annotated images are considered incompetent if they
contain any word indicating a question.

5. COMP: ‘ln-anno-img < 2‘ and ‘cor-anno > 0.9‘ — The data indicate that their are some expert
users that have no or only very few annotated images. This rule correctly select those.

6. COMP: ‘ln-anno-img > 7‘ and ‘cor-anno > 0.9‘ — Comments of experienced users with a high
percentage of correctly annotated users are considered competent

7. COMP: ‘ln-anno-img > 9‘ and ‘cor-anno > 0.85‘ and contains no ‘q-words‘ — Comments of
very active users with an average to high number of correctly annotated images are considered as
competent if they do not contain any word indicating a question.

10

http://openrefine.org/

Applying those rules to the Snapshot Serengeti user comments datasets results in the following statistics:

> category: null (count: 67396)
- rule: Rule 0: ’no matching rule’ (count: 39806)
- rule: Rule 1: ’< 3 tokens’ (count: 27590)

> category: COMP (count: 14791)
- rule: Rule 7: ’active users comment without query word’

(count: 11965)
- rule: Rule 6: ’high percentage of correctly annotated’ (count:

2669)
- rule: Rule 5: ’expert user’ (count: 157)

> category: INCOMP (count: 11212)
- rule: Rule 3: ’low percentage of correctly annotated’ (count:

6288)
- rule: Rule 4: ’average users comment with query word’ (count:

2471)
- rule: Rule 2: ’inexperienced user’ (count: 2453)

This shows that by applying the rules one can create a training set containing more than 10k training
examples for the two categories. This training set was used to train an OpenNLP Doccat model as
required by the OpenNLP Classification Extractor. The competence classification also defines a simple
thesaurus with two concepts representing the two categories so that the created fam:TopicAnnotation
can use concepts URIs.

@prefix xsd: <http://www.w3.org/2001/ XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#> .
@prefix dc: <http://purl.org/dc/elements /1.1/> .
@prefix fam: <http://vocab.fusepool.info/fam#> .
@prefix mmm: <http://www.mico -project.eu/ns/mmm/2.0/schema#> .
@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix compclass: <http://www.mico -project.eu/ns/compclass /1.0/schema#> .
@prefix example: <http://www.example.org/mico/competenceClassification#> .

test:topic -classification -1 a fam:TopicClassification ;
fam:classification -scheme compclass:CompetenceClassificationScheme ;
fam:extracted -from test:item1 ;
oa:item test:topic -annotation -2 , test:topic -annotation -1 .

test:topic -annotation -2 a fam:TopicAnnotation ;
fam:confidence "0.2823413046977258"^^xsd:double ;
fam:extracted -from test:item1 ;
fam:topic -label "Kompetent"@de , "Competent"@en ;
fam:topic -reference compclass:Competent .

test:topic -annotation -1 a fam:TopicAnnotation;
fam:confidence "0.7176586953022742"^^xsd:double ;
fam:extracted -from test:item1 ;
fam:topic -label "Inkompetent"@de , "Incompetent"@en ;
fam:topic -reference compclass:Incompetent .

The above listing shows the classification result of a user comment. The annotations include an anno-
tation representing the classification as a whole and two TopicAnnotations describing that the comment

11

was classified to about 70% as incompetent and 30% competent.
In our experiments, the OpenNLP maximum entropy classifier reached an accuracy of 0.70 and an

F1-score of 0.81. Looking closer at the results, however, these numbers are in part due to the fact that
the classifier has a bias towards high proficiency and most of the test data forum posts were from high
proficiency users. Still, the results are encouraging and we will continue developing these techniques.

Table 4 Competence Classification Extractor (TE-213)

Name MICO Competence Classification Extractor

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies This Extractor uses the OpenNLP Classification Extractor and so indi-
rectly depends on OpenNLP

Input data Plain text originating from written text or from speech to text transcod-
ing

Output data RDF

RDF persistence Web annotation based annotations as defined by the MICO metadata
model v2.0 with a single TopicClassification and possible multiple
TopicAnnotation as defined by the Fusepool Annotation Modell7

External Parameters none

Internal Parameters The extractor is configured with the OpenNLP Doccat model trained
on the Snapshot Serengeti user comments and a thesaurus representing
the trained categories.

2.3.2.1 Specific comments

Performance: See performance notes of the OpenNLP Classification Extractor

Output: As all MICO NLP extractors, the OpenNLP NER extractor will use the MICO meta-
data model v2 and create annotation bodies for Topic Classification and TopicAnnotation as defined
by the Fusepool Annotation Model. The Competence Classification Extractor only classifies whole
documents, so it is most useful for short texts like comments or replays on forums.

2.3.3 Text Language Detection Extractor – New

This extractor detects the language of a text, e.g., English, French, and so forth. It is based on the
Langdetect library. The correct detection of the language of a text is a pre-requirement of most NLP

12

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/shuyo/language-detection

processing as different languages required different configurations. Hence, the NLP processing compo-
nents typically need to select the correct configuration for the language of the to be processed text.

The extractor consumes text/plain content from an asset detects the language of this textual content
and writes a fam:LanguageAnnotation for the detected language

The following listing shows the output of this extractor.

@prefix fam: <http://vocab.fusepool.info/fam#> .
@prefix dc: <http://purl.org/dc/elements /1.1/> .
@prefix mmm: <http://www.mico -project.eu/ns/mmm/2.0/schema#> .
@prefix oa: <http://www.w3.org/ns/oa#> .
@prefix rdf: <http://www.w3.org/1999/02/22 -rdf-syntax -ns#> .
@prefix services: <http://www.mico -project.eu/services/> .
@prefix test: <http://localhost/mem/> .
@prefix xsd: <http://www.w3.org/2001/ XMLSchema#> .

test:item1 a mmm:Item ;
mmm:hasAsset test:asset1 ;
mmm:hasPart test:langAnnoPart ;
mmm:hasSyntacticalType "text/plain" ;
oa:serializedAt "2016-05-20 14:08:20.081" .

test:asset1 a mmm:Asset ;
dc:format "text/plain" ;
mmm:hasLocation "urn:eu.mico -project:storage.location:item1/asset1"

;

test:langAnno <http://purl.org/dc/terms/language> "en" ;
fam:confidence 9.999980266137359E-1 ;
fam:extracted -from test:item1 ;
a fam:LanguageAnnotation .

test:langAnnoPart mmm:hasBody test:langAnno ;
mmm:hasTarget test:e8bf6d0b -7add -412b-a9f3 -220569 fb2e25 ;
a mmm:Part ;
oa:hasBody test:langAnno ;
oa:serializedAt "2016-05-20 14:08:20.421" ;
oa:serializedBy services:text -lang -detect .

test:e8bf6d0b -7add -412b-a9f3 -220569 fb2e25 a oa:SpecificResource ;
oa:hasSource test:item1 .

2.3.3.1 Specific comments

Performance: Both memory and processing footprint of this extractor are minimal. It does not
use the whole textual content but randomly selected subsections of the content to detect the language.
Because of that, the size of the textual content does not have a major influence on the performance of
this extractor.

Output: Like all MICO NLP extractors, also this one creates RDF annotations according
to the MICO metadata model v2 and the Fusepool Annotation Model. This extractor creates

13

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md

Table 5 The OpenNLP Text Language Detection Extractor implementation (TE-213)

Name MICO Text Language Detection Extractor

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies This Extractor is based upon the Langdetect library.

Input data Plain text originating from written text or from speech to text transcod-
ing

Output data RDF

RDF persistence Web annotation based annotations as defined by the MICO metadata
model v2.0 with one or more fam:LanguageAnnotation instances rep-
resenting the languages detected for the processed text. Language An-
notations are written as defined by the Fusepool Annotation Model8

External Parameters none

Internal Parameters none

14

https://github.com/shuyo/language-detection

fam:LanguageAnnotations for detected languages.

2.3.4 OpenNLP Named Entity Recognition (TE-220) – New

The extractor for Named Entity Recognition is based on Apache OpenNLP and the IXA Pipes [RAR14]
extensions. For multilingual aspects, please see Section 2.4.

This extractor mines named entities from text/plain content. For this purpose, it requires the
OpenNLP Name Finder models to be configured for different languages. Debian packages providing
such models for English, German, Spanish and Italian to extract Persons, Organizations and Locations
are provided by MICO. Other can be added by users.

Table 6 The OpenNLP Named Entity Recognition Extractor implementation (TE-220)

Name MICO OpenNLP Named Entity Recognition (NER) Extractor

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies This extractor will be based upon the OpenNLP frameworks and the
IXA Pipes extensions (http://ixa2.si.ehu.es/ixa-pipes/)

Input data Plain text originating from written text or from speech to text transcod-
ing; fam:LanguageAnnotation for the text/plain asset - required to se-
lect the correct NER model

Output data RDF

RDF persistence Web annotation based annotations as defined by the MICO metadata
model v2.0 with Named Entity annotations as defined by the Fusepool
Annotation Model9

External Parameters NER model location

Internal Parameters The extractor will search for NER models in any sub-folder of the con-
figured one. By default this folder is set to /usr/share/mico-extractor-
opennlp-ner/models. This folder is also used by additional Debian
packages providing the IXA NERC models for English, German,
Spanish and Italian. For users that want to provide custom OpenNLP
NER models it is recommended to create similar Debian packages pro-
viding such models

2.3.4.1 Specific comments

15

http://opennlp.apache.org/
http://ixa2.si.ehu.es/ixa-pipes/
http://ixa2.si.ehu.es/ixa-pipes/

Performance: OpenNLP holds NLP models in memory. Using this extractor will require suffi-
cient memory for loading all configured models in memory. Loading all NER models provided by
MICO will require about 5 GB of RAM. In use cases where not all languages need to be supported
Debian packages of other languages can be uninstalled to reduce memory consumption. OpenNLP
can process concurrent requests on different CPU cores. Therefore scaling depends on the number and
speed of available CPU cores.

Output: Like all MICO NLP extractors, the OpenNLP NER extractor uses the MICO metadata
model v2 and create annotation bodies in accordance with the Fusepool Annotation Model.

Named Entity Recognition (NER) allows to detect mentions of trained entity such as Persons, Orga-
nization and Locations in texts. While OpenNLP comes with support for NER the quality of the default
models is not sufficient for use in most application. The models distributed by IXA Pipes NERC provide
much better quality. IXA Pipe NERC provides NER models for Basque, English, Spanish, Dutch, Ger-
man and Italian. Named Entity Results will be represented by fam:EntityAnnotation annotations.

2.3.5 Redlink Text Analysis Extractor (TE-213, TE-220) – Update

Extractor that uses the Redlink Analysis Service part of the Redlink Semantic Platform to extract Named
Entities; link to Entities defined in custom vocabularies or Wikipedia; sentiment analysis; classify texts
along classification schemes and or extract keywords.

The Extractor itself is open source. The usage of the Redlink service requires an account for Redlink.

2.3.5.1 Specific comments

Performance: This extractor does only put minor load on MICO as the processing is done by
the Redlink Analysis Service. The extractor itself sends the input content (text/plain) to the service
and processes the received analysis results. Every request to the extractor will generate a request to the
Redlink service. Those requests will count to the limit set for the account.

Output: The extractor outputs RDF according to the MICO metadata model (Open Annotation)
and uses Annotations Bodies as defined by the Fusepool Annotation Model to annotate features
extracted form the analyzed textual content.
The MICO metadata model v2 is supported starting with version 3.+ of the extractor. Older versions do
use the MICO metadata model v1.

The Extractor supports the following types of annotations:

• Content Language (fam:LanguageAnnotation): annotates the language of the processed text.

• Named Entities (fam:EntityAnnotation): annotates named entities (person, organization, loca-
tion and others) found in the text. The annotation also provides a selector with the exact position
of the entity.

• Linked Entity (fam:LinkedEntity): annotates the mention of an Entity as define by a controlled
vocabulary in the processed text. This is similar to a Named Entity, but also provide the reference
(URI) for the detected entity.

16

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/ixa-ehu/ixa-pipe-nerc
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
http://redlink.co/semantic-platform/
https://my.redlink.io/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#language-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#entity-mention-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#linked-entity-annotation

Table 7 Text Analysis Extractor based on the Redlink Analysis Service (TE-213 and TE-220)

Name mico-extractor-named-entity-recognizer

Original license Apache Software License 2.0

MICO integration license Apache Software License 2.0

External dependencies Redlink Analysis Service(https://my.redlink.io/)

Input data Text - while the Redlink platform supports plain as well as several
rich text formats the extractor is currently limited to the media type
‘text/plain’

Output data The extractor outputs RDF only. No binary content part is added to the
processed content item

RDF persistence In version 3.+ the extractor does use the MICO metadata model
v2. For Annotations it uses the annotation bodies for Named
Entities, Linked Entities, Topic Classification, Sentiment Annota-
tions and Keywords as defined by the Fusepool Annotation Model
(https://github.com/fusepoolP3/overall-architecture/
blob/master/wp3/fp-anno-model/fp-anno-model.md)

External Parameters None

Internal Parameters The Extractor need the ‘Redlink Analysis Name’ (-a) the ‘Redlink
Key’ (-k) to be configured as parameters for the daemon. In addi-
tion the extractor allows to specify a ‘Queue Name’ (-q) parameter.
This has to be used if multiple instance of this extractor configured for
different ‘Redlink Analysis’ configurations can be addressed by the
MICO broker.

Additional requirements This extractor requires an account for the Redlink Analysis Service

17

https://my.redlink.io/
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md

• Topic Classification (fam:TopicClassification and fam:TopicAnnotation): annotation
that classifies the processed text along topics defined by some classification scheme. Each
fam:TopicClassification consists of one or more fam:TopicAnnotations. The confidence
of a topic annotation defines how well the processed text fits to the topic. If topics are defined by
a controlled vocabulary the annotations will also provide a reference (URI) to the topic.

• Sentiment Annotation (fam:SentimentAnnotation): annotation that defines the sentiment of the
processed text in the range of [-1..+1] where -1 sands for negative and +1 for a positive sentiment.

• Keyword Annotation (fam:KeywordAnnotation): keywords are words and phrases with a spe-
cial improtance for the processed text. Keyword annotations provide a metric [0..1] that defines
the importance as well as the count how often the keyword is mentioned in the processed text.

Note that the set of annotations extracted form the processed text will depend on the configuration of
the configuration of the Redlink analyser application.

2.4 Multilingual support

Throughout the project, we have strived for broad multilingual support, with an emphasis on (i) the lan-
guages used in the MICO Showcases, and (ii) the official European languages. In the case of automatic
speech recognition, we based our first pipeline on the Kaldi library (see Section 2.2.1 for a description
of the central extractor). Kaldi represents the state of the art in speech recognition, is released under
a business friendly license, and can be trained for any language for which there is a sufficiently large
corpus of written and spoken text. On the downside, the availability of open-access language models
for Kaldi is growing slower than expected. It is costly to train new models, so the companies that do are
are not willing to share their results for free.

The MICO showcases require language support for English, Italian, and Arabic. Open-source mod-
els for English were easy to obtain, but for Italian we could only find proprietary ones, and non at all for
Arabic. There are tools to convert language models from the older CMU Sphinx format to one suitable
for Kaldi, but we were not satisfied with the results. We also tried to train our own language models for
Arabic and Italian but were hampered by the lack of open training corpora. We did however manage to
train a reasonable language model for the related language Amharic, which is the second-most spoken
Semitic language in the world after Arabic. Both this model, and the training data and intermediate
results for Italian and Arabic have been made available online for others to share.

To provide high-quality support for Italian and Arabic, we made an evaluation of the commercial
alternatives. After some consideration, we decided to integrate Microsoft’s speech recognition service
Bing. Bing supports both Italian and Modern Standard Arabic, and in addition most of the official Euro-
pean languages. It allows for up to 20 free requests per minutes and has a state-less mode of interaction
(which greatly simplifies integration). Most importantly, the quality of the transcripts were significantly
higher that those produced by our open-sources language models. For more on this extractor, see Sec-
tion 2.2.2.

Language support is also an issue for the textual language extractors, but for these tasks, there is
a greater availability of multilingual tools. In our experience, it is also easier to train custom textual
models than audio models. In MICO we have integrated functionality from the open-source libraries
OpenNLP and Standford NLP, and the closed-source RedLink library.

18

https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#topic-classification
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#sentiment-annotation
https://github.com/fusepoolP3/overall-architecture/blob/master/wp3/fp-anno-model/fp-anno-model.md#keyword-annotation

2.5 Final extractor list

Table 8 Overview of all MICO extractors.
Name Ver. Lang. Deb. RDF TEs Purpose
Animal Detection HOG 2 2.1.1 C++ yes yes1 TE-202 annotation
Animal Detection DPM 2 1.0.2 C++ yes yes1 TE-202 annotation
Animal Detection Yolo (CNN) 2 1.0.2 C++ yes yes1 TE-202 annotation
Audio Demux 3 2.2.1 C++ yes no TE-214 processing step
Face Detection 3 2.1.0 C++ yes yes1 TE-204 annotation
Diarization 3 1.3.0 Java yes no TE-214 processing step
Kaldi2rdf 2 3.1.0 Java yes yes TE-214 annotation help.
Kaldi2txt 2 2.2.0 Java yes no TE-214 processing step
Redlink Text Analysis (NER) 2,4 3.1.0 Java yes yes TE-213/220 annotation
ObjectDetection2RDF 2 2.2.0 Java yes yes TE-202 annotation help.
Speech-to-Text Kaldi 2 2.2.0 C++ yes yes1 TE-214 annotation
Speech-to-Text Bing (alpha) 2,4 1.1.0 C++ yes yes1 TE-214 annotation
Temporal Video Segmentation 5 2.2.0 C++ yes yes TE-206 annotation
Media Quality 5 discont. C++ no no TE-205 annotation
Audio Editing Detection 5 2.0.0 C++ yes no TE-224 annotation
Media Info 2 2.0.0 C++ yes yes1 TE-227 annotation
MediaTags2rdf 2 0.9.0 Java yes yes TE-227 annotation help.
Speech-Music-Discr. 5 discont. C++ no no TE-207 annotation
OpenNLP NER 2 1.2.0 Java yes yes TE-220 annotation
OpenNLP text class. Competence2 1.2.0 Java yes yes TE-213 annotation
OpenNLP text class. Sentiment2 1.2.0 Java yes yes TE-213 annotation
Text Language detection 2 1.2.0 Java yes yes additional annotation
Stanford NLP cancel. Java - - TE-213/220 annotation
Nudity Detection cancel. C++ - - TE-226 annotation
Generic Feature Extraction cancel. C++ - - TE-211/207 processing step
Video Segment Matching cancel. C++ - - TE-211 annotation

1 via annotation helper
2 Apache 2.0 license
3 GPL license
4 Apache 2.0 or GPL license but payed service used
5 proprietary licences

2.6 Extractor implementation guidelines – Broker v3

2.6.1 Extractor API Overview

MICO supports the implementation of media extractors in Java and C++. For both languages we provide
APIs which we kept as consistent as possible among the two languages. Figure 1 shows a top level
overview. The MICO APIs provide the following functionality:

• Runtime specific functionality (e.g. daemon tools for C++ extractors)

• Methods of communication with the MICO broker (registration, triggering analysis, error report-
ing, progress, finalization)

19

Figure 1 MICO API components overview

• Methods for annotation of the MICO meta data model (see also Section 4)

• Methods for extractor specific logging

The Java API is provided as artifact hosted on the MICO Nexus server. Due to the high amount of
dependencies to other libraries and the difficulties in providing all these dependencies in a controllable
way on a MICO Linux server we currently integrate the MICO Java API directly into the extractor
artifact (creating fat jars). The C++ API is deployed as a system package (Debian package format) and
re-used by any extractor.

2.6.2 Environment and Build

Although not a must, we strongly recommend to use CMake for C++ based and Maven for Java-based
extractor services. Please make sure that dependencies to external libraries are properly documented
(especially in the C++ case) and can be resolved by the build configuration.

2.6.3 OS Requirements

All extractors support the Linux (x64) operating system. Our current reference system is Debian 8.0
(Jessie). However, we have also successfully built the extractors on a Fedora 20 system (some depen-
dencies must be installed manually though.). The Java extractors are basically compilable on any system
with JDK 8, but since they are run as daemons, only Linux is supported during run time.

2.6.4 C++ Extractors

C++ extractors must follow these coding rules in order to be run by the MICO platform:

• Must be compiled as executables

• Must have mico-extractor-[name] as executable name

20

• Must provide 3 CLI positional arguments in the following order and 1 CLI switch:

extractor_executable_name [hostname] [username] [password] -k

where

[hostname] - is the server name of the mico platform (broker, marmotta, RabbitMQ)

[username] - is the user name for the MICO platform

[password] - is the user password for the MICO platform

-k - is used to kill the daemon service in a controlled manner

You may add additional CLI switches and options for the specific extractor configuration. Please
also refer to C++ extractor examples in the repository.

• Must run as Linux daemons when executed. This can simply be achieved by using the mico-
daemon provided by the MICO platform API. To start the daemon use mico::daemon::start.
To stop it with the -k option use mico::daemon::stop. A minimal main() function could look
like:

int main(int argc , char **argv)
{

//...
//set doKill according the command line parameter -k
//...
if(doKill) {

return mico::daemon::stop("MyMicoExtractorDaemon");
} else {

return mico::daemon::start("MyMicoExtractorDaemon", server_name ,
mico_user , mico_pass , {new MyMicoExtractorService()});

}
}

2.6.5 C++ Development Build

The extractor repository provides a module for finding the MICO platform C++ API for conveniences.
Use

find_package(MICOPlatformAPI REQUIRED)

in your CMake-script to find it. If the MICO platform C++ API has not been installed into the Linux
system you can give hints using CMAKE_PREFIX_PATH or MICOPlatformAPI_HOME as arguments to the
cmake script. A typical call could then look like:

cmake -DMICOPlatformAPI_HOME=[path to MICO platform API]
-DCMAKE_PREFIX_PATH=[path to local installs such as protobuf]
[path to extractor source]

All dependencies introduced by the MICO platform C++ API should be resolved by the find script for
the platform and using

target_link_libraries(${TARGET_NAME}
#...
${MICOPlatformAPI_LIBRARIES}

)

21

in your extractors CMakeLists.txt.
Please check example extractors build configuration for more ideas on how configure the build.
Once you’ve successfully run CMake you may run

make -j

in your build directory to build your extractor.

2.6.6 Implementing your own C++ Extractor Service

The best way to learn how an MICO extractor works, is to look into the OCR example extractors
located in the api/c++/samples directory of the MICO platform git repository. Here we give some
explanations of what an extractor service needs to do in order to work within the MICO system.

In order to enable a new extractor service to be called by the MICO broker and to communicate its
status it must derive from the AnalysisService class and implement the abstract call methods.

#include <AnalysisService.hpp>
#include <PersistenceService.hpp>

using namespace mico::persistence;
using namespace mico::persistence:model;
using namespace mico::event;

class MyFancyAnalysisService : public AnalysisService {
void call(AnalysisResponse& resp , std::shared_ptr < Item > item ,
std::vector < std::shared_ptr <Resource > > resources ,
std::map<std::string , std::string >& params);

};

The broker v3 (see Section 3.3) uses the extractors registration information and matches it to the running
instance of an extractor in order to execute extractors routes. For this, the extractor must provide its
ID, its current runtime mode and its version. In C++ this is done by calling the AnalysisService
constructor in the extractors constructor.

AnalysisService(const std::string serviceID , const std::string requires ,
const std::string provides , const std::string queue)

For sake of easiness the extractor API provides method in the header file

#include <MICOExtractorID.h>

that automatically fill that information, provided that the related precompiler flags are available. These
flags must be set in the CMakeLists.txt file as follows:

returned by mico::extractors::getPrecompExtractorId()
add_definitions(-DMICO_EXTRACTOR_ID=${TARGET_NAME})

returned by mico::extractors::getPrecompExtractorVersion()
add_definitions(-DMICO_EXTRACTOR_VERSION=${TARGET_VERSION})

returned by mico::extractors::getPrecompExtractorModeId()
omit when more than one mode is present
add_definitions(-DMICO_EXTRACTOR_MODE_ID=MyOnlyFancyMode)

22

A call to the base class extractor could thus look like:

MyFancyAnalysisService::MyFancyAnalysisService (...) :
AnalysisService(mico::extractors::getPrecompExtractorId(),

createModeId(inputMimeType),
mico::extractors::getPrecompExtractorVersion(),

inputMimeType , "application/x-mico -rdf")

The last argument is the mime type produced by the extractor (assuming the extractor is producing RDF
annotations, otherwise corresponding to the output format of the produced output) and kept for compat-
ibility reasons to broker v2. Once the broker decides to send a Resource to process to the extractor, the
call method is called which provide the following information:

• A response object that the extractor can use to communicate its status

• The original item ingested into the system

• The resources (Item and/or Parts) expected to be processed by the extractor (only one Resource
in broker v2)

• a forth parameter to be used in broker v3

The first thing an extractor needs to do is to grab its input data e.g.:

std::shared_ptr <Asset > asset = resources[0]->getAsset();
std::istream* in = asset ->getInputStream();

During processing the data broker v2 introduced two new ways to communicate the current extrator
status:

• sending progress information. This is especially important if it takes longer to analyse an asset
(e.g. a video). Example:

resp.sendProgress (1.0);

• sending error information. This is is a huge benefit since now the broker is able to detect extractor
internal errors. Example:

resp.sendErrorMessage(item ,mico::event::DECODING_ERROR ,"Decoder init
failed", "The decoder initialization failed for codec " +
codec_type);

The following error types are currently defined by the MICO event protocol:

UNSUPPORTED_CONTENT_TYPE
UNSUPPORTED_CONTENT_VARIANT
DECODING_ERROR
MISSING_ASSET
MISSING_ANNOTATION
INSUFFICIENT_RESOURCE
INSUFFICIENT_STORAGE
UNEXPECTED_ERROR

Once the data in the input stream has been processed it time to

23

• Create a new part, if the extractor has produced one

• Annotate the syntacticType and semanticType of the new part

• Do semantic annotations if the extractors has produces some (see Section 2.6.7)

Creating new parts is rather simple since the persistence service provide native methods for that and
does the required annotations in the MICO data model10 using anno4cpp internally.

//creating the new part and pass extractor ID as creator
std::shared_ptr <Part > newPart = item ->createPart(URI(getServiceID()));
std::shared_ptr <Resource > newResource =

std::dynamic_pointer_cast <Resource >(newPart);

//get the asset - since it has just been created this produces a new asset
std::shared_ptr <Asset > asset = newResource ->getAsset();

//get the stream of the asset
std::ostream* out = asset ->getOutputStream();

//set the mime format of the asset
asset ->setFormat("text/plain");

//write your produces data to the stream
*out << resultText;

//delete the stream
delete out;

/*
* If no Body is created by the extractor
*/

//Set syntacticType and semanticType of the resource

//For binary data the syntactic type derives from the format , and usually
//corresponds to ’mico:Text’ or ’mico:Video’ or ’mico:Audio’
newResource ->setSyntacticalType("mico:Text");

//Human -readable description of the output produced
newResource ->setSemanticType("Plain text produced by our fancy extractor");

/*
* Otherwise follow the example provided in the section
* "Semantic Annotation via Anno4CPP"
*/

// notify broker that we created a new content part
resp.sendNew(item , newResource ->getURI());

10For details, please refer to the MICO data model specification: http://mico-project.bitbucket.org/vocabs/mmm/2.
0/documentation/

24

http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/

// notify broker that we done with processsing
resp.sendFinish(item);

2.6.7 Semantic Annotation via Anno4CPP

Since version 2.0, the C++ MICO API uses the Java features of anno4j (see 4.1) which is also developed
within the MICO project. This approach makes sure that the MICO data model used by MICO Java
and C++ extractors, the MICO broker as well as MICO endpoints and applications is consistent. On
the other hand it introduces some complexity compared to a pure native implementation. Basically,
the PersistenceService provides native wrappers taking care for annotations which are repeatedly
required by the data model (Item, Part, Asset) as shown in the previous section. However, extractor
specific annotations need to be done using the anno4cpp framework directly. This section will give
some practical hints on how to to it and how to avoid pitfalls. Section 4.2 gives a short overview about
the underlying principles of anno4cpp.

In order to use the anno4cpp proxies one must set the scope of the JVM to the current thread. An
extractor developer must always do that since the call method is called asynchronously from different
threads by the event manager:

#include <PersistenceService.hpp>
#include <anno4cpp.h>
//....
jnipp::Env::Scope scope(mico::persistence::PersistenceService::getJVM());

Then the following code illustrates the normal proceeding when using anno4j and the mmm-anno4j
terms directly. Always make sure to check for Java exceptions, in particular after the final call. Instead
of importing packages one can use C++ namespaces that are constistent with the Java packages. As
long the object you create are used only in the local scope, you may use the jnipp:LocalRef<T> class
for referencing them. If you plan to use them in different scopes, use jnipp:GlobalRef<T> and pass
them through scopes via jnipp:Ref<T>. The following example of creating a face detection annotation
illustrates the usage of anno4cpp.

using namespace jnipp::com::github::anno4j::model::impl::selector;
using namespace jnipp::eu::mico::platform::anno4j::model::impl::targetmmm;
using namespace jnipp::eu::mico::platform::anno4j::model::impl::bodymmm;
using namespace jnipp::eu::mico::platform::anno4j::model::namespaces;
using namespace jnipp::java::lang;
using namespace jnipp::org::openrdf::repository::object;

//create a FragmentSelector using anno4cpp
jnipp::LocalRef <FragmentSelector > jFragmentSelector =

item ->createObject(FragmentSelector::clazz());

//check for Java exception either by checking the return value of ...
if (resources[0]->getPersistenceService().checkJavaExceptionNoThrow()) {

//do error handling
}
// ... or by throwing a C++ exception
resources[0]->getPersistenceService().checkJavaExceptionThrow();

//set properties of the fragment selector (region in this case)

25

jFragmentSelector ->setSpatialFragment
(Integer::construct(obj.region[0].posX),

Integer::construct(obj.region[0].posY),
Integer::construct(obj.region[1].posX -obj.region[0].posX),
Integer::construct(obj.region[2].posY -obj.region[1].posY));

//create body and target
jnipp::LocalRef <BodyMMM > jBody =

item ->createObject(FaceDetectionBodyMMM::clazz());
jnipp::LocalRef <SpecificResourceMMM > jTarget =

item ->createObject(SpecificResourceMMM::clazz());

jTarget ->setSelector(jFragmentSelector);

newPart ->setBody(jBody);
newPart ->addTarget(jTarget);

resources[0]->getPersistenceService().checkJavaExceptionThrow();

//Set syntacticType and semanticType of the new resource

//For RDF data the syntactic type corresponds to the Body Type , i.e.
newResource ->setSyntacticalType(MMMTERMS::FACE_DETECTION_BODY ->std_str());

//Human -readable description of the output produced
newResource ->setSemanticType("Spatial region corresponding to the face

detected inside the input asset");

2.6.8 Java Extractors

The implementation of Java extractors is similar to that of C++ extractors. It follows the same scheme
and can use anno4j directly.

26

3 Enabling Technology Modules for Extractor Orchestration

3.1 Introduction

The MICO broker provides all components and tools necessary to orchestrate heterogeneous media
extractors, thereby supporting complex analysis workflows (aka pipelines) which allow combination
and reuse of otherwise disconnected results from standalone extractors, to achieve improved analysis
performance. This sections provides information about the broker updates since MICO Technical Report
Volume 3 (broker version 1), which were provided with version 2 and version 3 of the broker in the third
year of the MICO project. It partially reuses material from a related publication at the LIME workshop.

To illustrate the challenges for extractor orchestration in MICO, an example workflow is depicted in
Figure 2): It uses MP4 video containers as input, and consists of three partial workflows (see yellow/o-
range rectangles): (a) shot detection, and shot boundary and key frame extraction; (b) face detection,
which operates on extracted boundary or key frames; (c) audio demux, speech2text and named entity
recognition.

Figure 2 example MP4 video analysis workflow in MICO

The resulting annotations can be used for queries such as “Give me all shots in a video where a
person says something about topic X”, and of course, it could be extended with other extractors to
further improve analysis performance, e.g., using speaker identification, face recognition, or extraction
of metadata from the respective MP4 container, etc.

The key challenges for broker development in MICO arise from the question: What components,

27

protocols and data are required to support the creation and execution of such workflows? Based on early
experiences and lessons learned in the project with the initial version 1 of the broker, the following key
requirements for orchestration were identified:

1. General requirements including

• backward-compatibility regarding the existing infrastructure (in order to reduce efforts for
extractor adaptation, especially regarding RabbitMQ, but also the Event API wherever pos-
sible)

• reuse of established existing standards / solutions where applicable; and support for several
workflows per MICO system, which was not possible with v1

2. Requirements regarding extractor (mode) properties and dependencies:

• support for extractor configuration, and support for different extractor “modes”, i.e., dif-
ferent functionalities with different input, output or parameter sets, encapsulated within the
same extractors

• support for more than one extractor input and output; support for different extractor versions

• distinction between different I/O types: MIME type, syntactic type (e.g., image region),
semantic concept (e.g., human face)

3. Requirements regarding workflow creation:

• avoiding loops and unintended processing

• extractor dependency checking during planning and before execution

• simplifying the workflow creation process (which was very complicated)

4. Requirements regarding workflow execution:

• error handling, workflow status and progress tracking and logging

• support for automatic process management

• support for routing, aggregation, splitting within extraction workflows (EIP support)

• support for dynamic routing, e.g, for context-aware processing, using results from language
detection to determine different subroutes (with different extractors and extractor configura-
tions) for textual analysis or speech2-to-text optimized for the detected language

The following will describe how these requirements were addressed with broker version 2 and the
current version 3, which can be summarized as follows:

• v2 provided several major modifications and extensions to the MICO Event API related to error
management, progress communication, provision of multiple extractor outputs, and registration.
The goal of v2 was to provide an earlier API update for urgent issues and to give extractor devel-
opers an opportunity to already adapt to an extended broker data model to be applied for v3.

• v3, in contrast, was meant to focus on the addition of new broker components for registration,
workflow creation and execution, to address most of the remaining aforementioned requirements.

The following will describe the current broker status and approaches in more detail, i.e. describe the
broker model and components applied and describe how workflow creation and execution was imple-
mented. Finally, we will also list some open issues that remain to be addressed in the future.

28

3.2 Broker Design and Implementation

3.2.1 Principles

Broker v2 and v3 implementation follows a set of principles and assumptions, regarding extractor
registration and model:

• Some parts of extractor information can be provided during packaging by the developer (extractor
I/O and properties), while other parts can only be provided after packaging, by other developers
or showcase administrators (semantic mapping, and feedback about pipeline performance): Reg-
istration information is provided at different times.

• Extractor input and output should be separated into several meta types (a) MIME types e.g., ‘im-
age/png’, (b) syntactic types e.g., ‘image region’, and (c) semantic tags e.g., ‘face region’. MIME
types and syntactical types are pre-existing information that a extractor developer / packager can
refer to using the MICO data model or external sources, while semantic tags are subjective, de-
pending on the usage scenario, will be revised frequently, and are often provided by other devel-
opers or showcase administrators. Often, they cannot be provided at extractor packaging time,
nor do they need to be, as they do not require component adaptation. As a consequence, different
ways of communicating the various input and output types are needed.

• A dedicated service for extractor registration and discovery can address many of the mentioned
requirements, providing functionalities to store and retrieve extractor information, supporting both
a REST API for providing extractor registration information, and a front-end for respective user
interaction, which is more suitable to complement information that is not or cannot be known to
an extractor developer at packaging time.

• The MICO broker should reuse the existing MICO data model as far as possible, e.g., for syntactic
types, and extend the MICO data model for that purpose; wherever applicable, extractors and
extractor versions, types etc. should be uniquely identified via URIs; the broker also needs some
specific information e.g. for workflow planning and execution, which is not relevant for the other
MICO domains, and that should be persisted within the broker domain.

Regarding workflow planning and execution, we came to the following conclusions:

• Apache Camel is a good choice for workflow execution, supporting many EIP and all core require-
ments for the project. It should be complemented by MICO-specific components for retrieving
data from Marmotta to put them into Camel messages, in order to support dynamic routing.

• The broker should not deal with managing scalability directly, but allow later scalability im-
provements by keeping information about extractor resource requirements, and allowing remote
extractor process startup and shutdown.

• Manual pipeline creation is a difficult process, due to the many constraints and interdependen-
cies, depending on the aforementioned types, but also content, goal, and context of an applica-
tion. Considering this, we found that it would be extremely desirable to simplify the task of
pipeline creation using a semi-automatic workflow creation approach that considers the various
constraints. Moreover, it should store and use feedback from showcase admins on which extrac-
tors and pipelines worked well for which content set and use cases.

• Support of content sets and the mapping of content sets to workflows via jobs can be handy to
simplify the execution and monitoring of workflows.

29

Figure 3 MICO broker components

3.2.2 Broker Components

The broker includes the components depicted in Figure 3: The registration service provides a REST
API to register extractors (which produce or convert annotations and store them as RDF), thereby
collecting all relevant information about extractors. It also provides global system configuration param-
eters (e.g., the storage URI) to the extractors, and retrieval and discovery functionalities for extractor
information that are used by the workflow planner. The workflow planner is responsible for the semi-
automatic creation and storage of workflows, i.e., the composition of a complex processing chain of
registered extractors that aims at a specific user need or use case. Once workflows have been defined,
they can be assigned to content sets. Finally, the item injector is responsible for injecting items into
the system, thereby storing the input data, and triggering the execution of the respective workflows (al-
ternatively, the execution can also be triggered first on every extractor able to handle the input item,
and then recursively on every other connected extractor, as in v1 and v2). Workflow execution is then
handled by the workflow executor, which uses Camel, and a MICO-specific auxiliary component to
retrieve and provide data from the data store to be used for dynamic routing within workflows. Finally,
all aforementioned Linked Data and binary data is stored using the data store.

3.2.3 Extractor Lifecyle

From an extractor perspective, the high-level lifecycle can be summarized as depicted for the original
broker design planning in Figure 4: Extractor preparation includes the preparation and packaging of
the extractor implementation, including registration information that is used to automatically register
the extractor component upon extractor deployment (and possibly test data and test case information
for the extractor). As soon as extractor registration information is available, it can be used for work-
flow creation, which may include extractor / workflow testing if the required individual extractor test
information is provided. For planning, or the latest for execution, the broker may have to perform an
extractor process startup in certain cases, and workflow execution is then performed upon content

30

Figure 4 MICO extractor lifecylcle

injections or user request.
The current v3 of the broker implements all core functionalities of that process, i.e. everything

except extractor and workflow testing support and remote process startup. In addition to the original
planning, extra functionalities for content ingestion have been implemented, including (a) content set
definition, (b) job definition (i.e. binding content sets to workflows) and (c) extractor (version and
mode) availability checking and job execution, including user notification upon job completion, using a
dedicated REST workflow management endpoint.

3.2.4 Broker Model

The data model of the MICO broker is meant to capture the information needed to to support extractor
registration, workflow creation and execution, and collecting feedback from annotation jobs (i.e., pro-
cessing workflows applied to a defined content set). It uses URIs as elementary data and extends the
MICO Metadata Model (MMM)11. The broker data model is composed of four interconnected domains,
represented by different colors in Figure 5, which are described in the following:

• The content description domain (yellow) includes the following main entities:

– ContentItem captures information of items that have been stored within the system.

– As described in [Aic+15, ch. 3.2], MICO items combine media resources and their respec-
tive analysis results in ContentPart.

– ContentItemSet are used to group several ContentItems into one ContentItemSet. Such a Set
can be used, to run different pipelines on the same set, or to repeat the analysis with an
updated extractor pipeline configuration.

11 http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/

31

http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/

Figure 5 MICO broker model overview

• The extractor configuration domain (blue) with two main entities:

– ExtractorComponent, which captures general information about registered extractors, e.g.,
name and version

– ExtractorMode, which contains information about a concrete functionality (there must be at
least one functionality per extractor), which includes information provided by the developer
at registration time, e.g., a human-readable description and configuration schema URI. For
extractors which create annotations in a format different from RDF, it includes a output
schema URI.

• The input/output data description domain (green) stores the core information necessary to val-
idate, create and execute extractor pipelines and workflows:

– IOData represents the core entity for the respective input or output to a given Extractor-
Mode.

– MimeType is the first of three pillars for workflow planning. RDF data produced by extrac-
tors will be labeled as type application/x-mico-rdf.

– IOData_has_MimeType connects I/O data to MimeType. It has an optional attribute For-
matConversionSchemaURI which signals that an extractor is a helper with the purpose of
converting binary data from one format to another one (e.g. PNG images to JPEG).

– The SyntacticType of data required or provided by extractors is the second pillar for work-
flow planning. For MICO extractors which produce RDF annotations, the stored URI should
correspond to an RDF type, preferably to one of the types defined by the MICO Metadata
model([Aic+15, ch. 3.4]). For binary data, this URI corresponds to a Dublin Core format
[Boa12].

– SemanticType is the third pillar for route creation and captures high-level information about
the semantic meaning associated with the I/O data. It can be used by showcase administra-
tors to quickly pre-filter / discover new or existing extractors that may be useful for a their
use case, even if the syntactical type is not (yet) compatible – this information can then be
exploited to request an adaptation or conversion.

32

• The platform management domain (orange) combines several instances related to platform man-
agement:

– ExtractorInstance is the elementary entity storing the URI of a specific instance of an extrac-
tor mode, i.e., a configured extraction functionality available to the platform. The informa-
tion stored in the URI includes the parameter and I/O data selection and further information
stored during the registration by the extractor itself.

– EvalInfo holds information about the analysis performance of an ExtractorInstance on a
specific ContentItemSet. This can be added by a showcase administrator to signal data sets
for which an extractor is working better or worse than expected.

– Pipeline captures the URI of the corresponding workflow configuration, i.e., the composition
of ExtractorInstances and respective parameter configuration.

– UseCase is a high-level description of the goal that a user, e.g., showcase administrator,
wants to achieve.

– Job is a unique and easy-to-use entity that links a specific Pipeline to a specific Content Item
Set. This can e.g. be used to verify the analysis status.

– UseCase_has_Job is a relation that connects a UseCase to a specific Job, which can be used
to provide feedback, e.g., to rate how well a specific Pipeline has performed on a specific
ContentItemSet

As outlined in Section 3.2.1, a key broker assumption is that some extractor information is provided
at packaging time by the developer (extractor properties, input and output) while other extractor infor-
mation will typically be provided after packaging time, by other developers or showcase administrators.
The registration service is one central point to register and query that extractor information, which pro-
vides the information needed for workflow planning (see Section 3.4) and execution (see Section 3.5).
The registration service provides a REST API for providing extractor registration information.

3.3 Extractor registration service

The MICO registration service is the broker component responsible for storing and retrieving informa-
tion about the extractors known to the MICO platform. This information, corresponding to the extractor
configuration domain and to the input/output data description domain of the broker data model in
Section 3.2.4, is of crucial importance for ensuring the compatibility of several extractor built indepen-
dently from one another. Moreover, as described more in details in Section 3.4 and 3.5, is the core
information used for both creating and executing the MICO workflows for complex analysis chains.

3.3.1 Example registration XML

The extractor registration information, as introduced in D2.2.2 [Aic+15], is firstly provided by the ex-
tractor developers in the form of an XML file. As defined in the XSD file previously presented in
D2.2.212, the XML file contains a root element of type extractorSpecification, containing a unique
extractor id and a respective extractor name for non-expert users, the version of the extractor, one or
more extractor modes, and an indication about the extractor being a singleton – e.g., if requires a local,
non-replicable database to run correctly:

12Available online at https://bitbucket.org/mico-project/extractor-registration-beans/src/master/src/
main/resources/micoRegistration.xsd

33

https://bitbucket.org/mico-project/extractor-registration-beans/src/master/src/main/resources/micoRegistration.xsd
https://bitbucket.org/mico-project/extractor-registration-beans/src/master/src/main/resources/micoRegistration.xsd

1 <?xml version ="1.0" encoding="UTF -8"?>
2 <extractorSpecification

xsi:noNamespaceSchemaLocation="micoRegistration.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance">

3

4 <!--general info-->
5 <name>Example Extractor</name>
6 <version>1.0.0</version>
7 <id>mico -example -extractor</id>
8

9 <!-- mode ids must be unique! -->
10 <mode>
11 <id>first -mode</id>
12 ...
13 </mode>
14 <mode>
15 <id>second -mode</id>
16 ...
17 </mode>
18

19 <!-- true if and only if only ONE instance at a time should be connected
to the platform. In most of the cases , this is false -->

20 <isSingleton>false</isSingleton>
21 </extractorSpecification>

Each mode of an extractor corresponds to a specific functionality – e.g., corresponding to a particular
set of non-modifiable startup parameters – and thus also bound to a pre-defined set and amount of inputs.
Every mode is specified by means of its id and human-readable description, one or more inputs, one
or more outputs, zero or more parameters:

1 <extractorSpecification
xsi:noNamespaceSchemaLocation="micoRegistration.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance">

2

3 ...
4

5 <!-- mode ids must be unique! -->
6 <mode>
7

8 <!-- general info -->
9 <id>Barack -Obama -Identification</id>

10 <description>MICO extractors for identifying the face of Barack
Obama</description>

11

12 <!-- input definition -->
13 <input>
14 <!-- human readable information about the current input-->
15 <semanticType>
16 <name>Image with a detected face</name>
17 <description>Image containing a face , it’s going to be further

analyzed to determine if it corresponds to Barack Obama</description>

34

18 </semanticType>
19 <!-- machine readable information -->
20 <dataType>
21 <!-- one entry for each allowed mimetype -->
22 <mimeType>image/png</mimeType>
23 <mimeType>image/jpeg</mimeType>
24 <!-- for binary data , this is one of mico:Audio , mico:Video ,

mico:Image , mico:Text (mico:FirstPartOfTheMimeType)-->
25 <syntacticType>mico:Image</syntacticType>
26 </dataType>
27 </input>
28 <input>
29 <!-- human readable information about the current input-->
30 <semanticType>
31 <name>Face recognition body </name>
32 <description>Annotation associated with the input

image</description>
33 </semanticType>
34 <!-- machine readable information -->
35 <dataType>
36 <!-- for rdf annotation , this is always -->
37 <mimeType>application/x-mico -rdf</mimeType>
38 <!-- rdf:type of the body assigned to the current input part-->
39 <syntacticType>mmmterms:FaceDetectionBody</syntacticType>
40 </dataType>
41 </input>
42

43 <!-- output definition -->
44 <output>
45 <!-- human readable information about the current input-->
46 <semanticType>
47 <name>Person</name>
48 <description>If present , signals the presence of Barack Obama in

the input image</description>
49 </semanticType>
50 <!-- machine readable information -->
51 <dataType>
52 <!-- for rdf annotation , this is always -->
53 <mimeType>application/x-mico -rdf</mimeType>
54 <!-- rdf:type of the body assigned to the current input part-->
55 <syntacticType>http://example -onthology.com/v0.0.0#

PersonIdentificationBody</syntacticType>
56 </dataType>
57 <!-- LDpath -based location of the output part-->
58 <location><![CDATA[mmm:hasPart [mmm:hasBody / rdf:type is

http://example -onthology.com/v0.0.0# PersonIdentificationBody
]]]></location>

59 </output>
60

61 <!-- parameter definition -->
62 <param>

35

63 <name>Recognition threshold</name>
64 <description>Minimum confidance value (in probability) to be scored

before recognizing Obama. Defaults to 0.9</description>
65 <primitiveType>
66 <primitive>float</primitive>
67 </primitiveType>
68 <allowedRange>
69 <allowedRange>
70 <minIncl>0.75</minIncl>
71 <maxIncl>0.95</maxIncl>
72 </allowedRange>
73 </allowedRange>
74 </param>
75

76 </mode>
77

78 ...
79

80 </extractorSpecification>

3.3.2 REST API

The MICO registration service has several functionalities, that can be accessed by means of a dedicated
REST API. The primary functions address the management of the aforementioned XML schemas:

POST /add/extractor – Register a new extractor (via XML file upload - see schema micoRegistra-
tion.xsd)

POST /update/extractor/{id:.+} – Replace an existing extractor specification - i.e. the whole docu-
ment (via XML file upload)

GET /get/extractor/{id}/xml – Provides information about a specific extractor (as XML)
GET /get/extractor/{id}/json – Provides information about a specific extractor (as JSON)
DELETE /delete/extractor/{id:.+} – Delete an extractor (and related deployments)

A further part of the REST API is completely dedicated to the retrieval of the available extractors, also
depending on the required output, input, or on their human-readable name:

GET /find/extractors – Returns all the available extractors
POST /find/extractors/input – Find extractors requiring specific types
POST /find/extractors/output – Find extractors providing specific types
GET /find/extractors/name/{name:.+} – Find extractors having a specific name
GET /find/extractors/mode/{keyword:.+} – Find extractors containing modes having a specific de-

scription

The third and last part of the REST API, is dedicated to the extractor deployments information – that is
intended to be used, e.g., for the remote extractor startup required by the MICO broker:

POST /add/deployment/{id:.+} – Add deployment information for a specific extractor
POST /update/deployment/{id:.+} – Update deployment information for a specific extractor

36

GET /get/deployments/extractor/{id:.+} – Get deployment information for an extractor
DELETE /delete/deployment/{deploymentid}/extractor/{extractorid:.+} – Delete deployment infor-

mation from a specific extractor

The complete description of the API, including data formats of the input required by POST op-
erations, is currently available at http://mico-project.bitbucket.org/api/rest/index.html?
url=registration.json.

3.4 Workflow Creation

One of the lessons learned of the initial MICO project phase was that manual creation of workflows
is more complicated and difficult than expected, as it requires know-how not only regarding extractor
inter-dependencies and constraints on multiple levels, but also regarding the content used, and regarding
the context and goal of a specific analysis use case.

In order to address this problem, the idea of a semi-automatic workflow creation process emerged,
by means of web-based graphical tool for progressive creation and management of MICO workflows.

3.4.1 Using the workflow creation tool

In a first step, the workflow creation tool retrieves information about all the extractors registered to
the platform by accessing the registration service described in Section 3.3. Then, it finds possible
combinations of matching extractors using two of the three information pillars outlined in Section 3.2,
namely the syntacticType and mimeType.

The syntactic types are used to build a first graph, where all available MICO extractor modes (dis-
played as golden nodes) are connected between each other only if the respective input/output syntactic
types (displayed as green nodes) are equal. The user can then select the extractors to be included in
its workflow by clicking on the relative nodes, obtaining an initial configuration as in Figure 6. In this
example, the creation process started from multimedia content with MP4 video and text, where the user
could incrementally add suitable extractors proposed by the GUI using the aforementioned information
pillars.

After selecting the desired set of extractor modes, the user can configure each of them separately,
e.g. by selecting specific input and output mime types to be used, as well as by setting the desired values
of the individual run-time parameters. The options are available by ad-hoc forms as in Figure 7.

After the selection of parameters and mime types, the user can verify that the connections between
extractors can work as expected or not. For instance, Figure 8 shows a workflow that is validated, while
Figure 9 shows the same but invalid workflow, due to a slightly different configuration of the AudioDe-
mux: The latter does not provide the output of type “audio/wav”, which leads to an incompatibility that
is signaled within the GUI.

Even from this small example, it should be clear that the broker information pillars do not represent
a simple hierarchy: For instance, the indication of two extractors providing and consuming a matching
mimeType and syntacticType, but lacking the same semanticType can be used to signal to the service
which extractors could match and hence should be linked via a new semanticType, requiring human
feedback to create this link. Vice versa, if it turns out that two extractors seem to provide similar output,
as signalled by syntacticType and semanticType, but the mimeType does not fit – which could be the case
for a workflow as in Figure 9 –, this can be exploited as a signal that a simple extension of the extractor
to support a new mimeType, e.g., via format conversion, could do the trick to create interoperability.

37

http://mico-project.bitbucket.org/api/rest/index.html?url=registration.json
http://mico-project.bitbucket.org/api/rest/index.html?url=registration.json

Figure 6 A preliminary extractor workflow

Figure 7 Configuration of extractor run-time parameters

38

Figure 8 A correctly configured extractor workflow

Figure 9 An extractor workflow with one missing connection

39

3.4.2 Camel Route definition

After completion, the user can store the resulting workflow as a Camel route to be used for workflow
execution, e.g. as in Figure10.

Figure 10 Camel route example

These routes define the complete messaging of the an Item injected into the platform, and of every
Part generated by the extractors, by means of routes, pipelines, splitters, multicasts and aggregators –
i.e., by explicitly using robust Enterprise Integration Patterns provided by Apache Camel.

This choice, although producing complicated pipelines, is due to the peculiar requirements of the
MICO extractors in terms of distributed processing, error messaging, and early stopping of items or
parts that cannot be processed. Moreover, a filtering of the inputs both at syntactic and at mime type
level is performed, thus ensuring the input/output data compatibility – which was not the case in the
previous version of the broker.

An important remark, is that these extractor connections can be verified even before starting any
extractor implementation. This is a crucial difference compared to the previous API, where the only way

40

of verifying data compatibility, was to completely implement the extractors involved in the pipelines.
The configuration chosen for the extractors is completely reported in the produced camel route, by

specifying the related properties of the MICO RabbitMQ Camel component according to the configura-
tion selected with the help of the forms:

1 <to uri="mico -comp:vbox1?
2 extractorId=mico -extractor -audiodemux&
3 extractorVersion =2.2.1&
4 modeId=AudioDemux&
5 parameters={"freq":"8000"}&
6 inputs={"mico:Video":
7 ["video/mp4","video/mpeg"]}"/>

3.4.3 REST API

The MICO broker includes a dedicated REST API for management and status retrieval of all the Camel
routes deployed. A first set of of functions directly addresses the management of the XML camel routes:

POST /workflow/add – Add/replace all routes of a workflow to the broker
POST /workflow/del/{id} – Remove a workflow with a given id
GET /workflow/camel-route/{id} – Returns the XML representation of a specific workflow
GET /workflow/routes – Returns a list with all workflow IDs and relative descriptions

While a second set is dedicated to their status retrieval:

GET /workflow/routesInfo – Returns a list with all routes and their current status
GET /workflow/statusInfo/{id} – Return extended information about status of specific workflow

3.5 Workflow Execution

Once workflows have been created and stored as Camel routes, using the semi-automatic approach, they
can be assigned to content items and sets, and execution can be triggered via the item injector or the
user / showcase admin.

The actual workflow execution is performed using four main components, two of which were al-
ready mentioned in Section 3.2.2): The workflow executor as master component, which uses the other
components and is based on Apache Camel, and the auxiliary component, a MICO-specific extension
to Camel that allows Linked Data retrieval to support dynamic routing. In addition, the RabbitMQ mes-
sage broker serves as communication layer to loosely couple extractors and the MICO platform, and a
MICO-specific Camel endpoint component that connects Camel with the MICO platform, and triggers
extractors via RabbitMQ.

An example for dynamic routing is depicted for extracting spoken words from an mp4 video (fig-
ure 11): After audio demuxing (demux), the audio stream from the mp4 video is stored and provided to
diarization13 and language detection (lang_detect. Both analyze the audio content in parallel, and store
their annotations in Marmotta. At this point, dynamic routing is applied to optimize performance: The
auxiliary component loads the detected language from Marmotta and puts it into the Camel message

13The segmentation of audio content based on speakers and sentences.

41

Figure 11 MICO workflow execution with dynamic routing

header – it knows where to locate the detected language, as lang_detect described by the storage loca-
tion with its registration data via LDPath [Sch+12]. Afterwards, the language information within the
Camel message header is evaluated by a router component, which triggers the Kaldi extractor optimized
for the detected language. Beyond this example, there are many use cases where such dynamic routing
capabilities can be applied.

3.5.1 Extractor and workflow status information

As shown in Table 9 the broker offers REST methods to check the current state of extractors. The
following list explains possible states.

CONNECTED: at least one running instance of this extractor is connected to the broker
DEPLOYED: the extractor is registered but no running instance is connected to the platform. The

extractor can be started by the broker
NOT_DEPLOYED: the extractor is registered but no running instance is connected and the broker is

not able to start one
UNREGISTERED: an extractor with this id and version is not registered (is unknown) to the system

Depending on the extractor states involved in a workflow each workflow also has a state, which
allows to broker distinguish if it can process items with or not. The following list explains the possible
workflow states.

ONLINE: all extractors involved in this route are registered and connected
RUNNABLE: all extractors involved in this route are registered, but at least one is not connected. The

missing extractors can be started by the broker, to bring the route online.

42

Table 9 Broker inject API.
Please see http://mico-project.bitbucket.org/api/rest/?url=broker.json for a detailed
API documentation and all parameters. On a default configured MICO platform, the endpoints are
available as a sub resource of http://mico-platform:8080/broker.

Method URL Description
POST /inject/create Create a new item and return its URI in the ’uri’ field of the

JSON response
POST /inject/add Add a new part to an item using the request body as asset

content. The URI of the new part in the ’uri’ field of the
JSON response

POST /inject/submit Submit an item for analysis by notifying the broker to pro-
cess it with a given workflow.

GET /inject/items retrieve information about injected items and correspond-
ing parts

GET /status/services retrieve a list of currently connected extractor services
GET /status/download retrieve the binary asset of an item or a part
GET /status/info retrieve general information about the service as plain text

UNAVAILABLE: all extractors involved in this route are registered, but at least one is not connected
and deployed on platform. To make this route available the missing extractor needs to be started
manually by a user.

BROKEN: at least one extractor is not registered anymore. The route should be updated or removed
from platform.

3.5.2 RabbitMQ Endpoints

In broker version 3 we adapted some parts of the initial rudimentary workflow orchestration approach,
which simply send all new parts to all extractor services that could handle it, to use the camel framework
[Fou04] for workflow definition and execution. More information about drawbacks of the old orchestra-
tion and the benefits of the new approach are explained in Section 3.2.1. To use camel framework within
the MICO platform some MICO related camel extensions like a RabbitMQ [PS04] endpoint and aggre-
gation components where implemented. The main task of the RabbitMQ endpoint is communication
with the extractor services through the RabbitMQ message broker.

3.5.3 REST API methods for item creation and injection

Besides a web-front-end for item creation and process execution the MICO broker includes a REST API
to be used remotely by other services. Table 9 provides a brief overview of the functions provided by
Broker REST API. Further information like extended parameter and response description are available
at [MP15]

A demo service, implemented for platform evaluation purposes, that uses the REST API to create
and process new items is available in public git repository14 of mico platform.

14https://bitbucket.org/mico-project/platform

43

http://mico-project.bitbucket.org/api/rest/?url=broker.json
https://bitbucket.org/mico-project/platform

3.6 Content Set, Job and Workflow Management

During the third year of the project, we developed an additional webservice, namely the MICO man-
agement service, meant to support the broker and provide advanced management functionalities for the
showcase administrators of the MICO platform.

As thoroughly explained in the previous section, the MICO broker is addressing the execution of a
single item against a single workflow. By means of the data model in section 3.2.4, however, the poten-
tial of the broker can be disclosed far beyond that point, e.g. by introducing the concept of ContentSet
– i.e., a set of item or a set of item bundles – and of Job – i.e., the execution of every item/bundle of a
ContentSet against a specific set of workflows.

This components, which were developed separately and in parallel to the broker, are going to be
provided in a first step as closed-source freeware. They are not required for the platform execution, but
are only meant to enhance its usability – and were hence implemented as REST-based web applications.

3.6.1 Workflow Management: REST API

The workflow manager provides persistence and retrieval of workflows – in contrast to the volatile
in-memory behavior of the broker:

POST /add/workflow – Persist a camel route, and associated UI parameters
GET /get/workflow/status/{id} – Get the status of an existing workflow
GET /get/workflow/camel-route/{id} – Get the xml camel route definition of an existing workflow
GET /get/workflow/ui-params/{id} – Get the UI parameters of an existing workflow
DELETE /del/workflow/{id} – Delete a camel route
GET /list/workflows – Get a list of the existing workflows ids belonging to the current user
POST /resubmit/workflow/{id} – Convenience method for re-submitting an existing workflow to the

broker (e.g., if the broker restarted and lost all camel deployed routes)

Further information can be retrieved by accessing the online documentation at http://
mico-project.bitbucket.org/api/rest/?url=management.json.

3.6.2 Content Manager: REST API

The content manager provides methods for managing items and item sets. In addition to creating item
sets only form local resources, is it possible to generate them by providing the URL to the respective
elements to be download.

A first part of the API is addressing the management of single items:

POST /add/contentitem/public/{public} – Register a single content item. If public is set to true, also
other users can include the new item to their own content sets

GET /get/contentitem/{uid}/{cid} – Provides info about a content item
DELETE /delete/contentitem/{uid}/{cid} – Delete a content item belonging to a user
GET /ispartofset/item/{uid}/{cid} – Checks if an item is part of any content set
GET /get/items/user/{uid} – Provides a list of available items, i.e. owned by user or public, both in

groups and outside

A second part of the API is instead addressing the management of online and offline content sets:

44

http://mico-project.bitbucket.org/api/rest/?url=management.json
http://mico-project.bitbucket.org/api/rest/?url=management.json

POST /create/contentset – Create a new ’offline’-content-set
POST /add/contentset – Register a new online-content-set (via XML file upload - see schema On-

lineContentSet.xsd)
POST /add/contentset/json – Register a new online-content-set (via JSON file upload)
GET /get/status/contentset/{id:.+} – Provides the processing status of a content set
DELETE /delete/contentset/{csid} – Delete a content set
GET /get/contentsets/user/{uid} – Provides a list of content sets (ids) which can be accessed by the

specified user
GET /get/contentset/{id}/xml – Provides information about a content set (as XML)
GET /get/contentset/{id}/json – Provides information about a content set (as JSON)
GET /get/access/contentset/{csid}/user/{uid:.+} – Provides the access status for a specific content

set and user
GET /get/groups/contentset/{csid}/user/{uid:.+} – Provides a list of groups belonging to a set and a

certain user
GET /get/items/contentset/{csid}/group/{gid}/user/{uid:.+} – Provides a list of items belonging to

a group of a specific set

Valid offline content sets can be configured with a simple JSON obect formatted as follows:

{
"ownerId": 23,
"description": "Example offline dataset",
"isPublicSet": true,
"contentIds": [

"0/fb4c5cb6 -6b09 -4c19 -aa43 -fad8f8b34e62",
"23/fd5957f2 -ad41 -4fd0 -b1e3 -24db84b0afca"

]
}

An example XML definition of an online content set is instead the following:

1 <?xml version ="1.0" encoding="UTF -8"?>
2 <ContentSet Online="true" id=""

xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"
xsi:noNamespaceSchemaLocation="ContentSet.xsd">

3

4 <Properties CreateSubsetOnFailure="true"
CreationDate="2001-12-31T12:00:00" Description="Example online set"
IsPublic="true" NotificationType="my.email@server.com" Owner="0" />

5 <DownloadInfo>Created accessing the website of the EU MICO
project</DownloadInfo>

6

7 <Group GroupID="">
8 <Content ContentID=""

OriginalLocation="http://www.mico -project.eu/wp-content/uploads /2016/03/
bird.png" StorageID="" Owner="" />

9 <Content ContentID=""
OriginalLocation="http://www.mico -project.eu/wp-content/uploads /2016/03/
facedetect.jpg" StorageID="" Owner="" />

10 </Group>

45

11

12 </ContentSet>

Further information can be retrieved by accessing the online documentation at http://mico-project.
bitbucket.org/api/rest/?url=management.json.

3.6.3 Job Manager

A third part of the REST API addresses the Job Management:

GET /get/jobs/user/{uid:.+} – Provides a list of job ids available for a specific user

GET /get/job/{jid} – Provides information about a certain job

POST /add/job – Register a new job (via XML file upload - see schema Job.xsd)

GET /hasresults/job/{jid} – Checks if a job has a job result

DELETE /delete/job/{jid} – Delete a job

GET /ispartofjob/contentset/{csid} – Checks if a set is part of any job

GET /get/elements/job/{jid} – Provides a set of job elements for a certain job

POST /add/results – Add a result for a job

DELETE /delete/results/{jid} – Delete a job result

GET /start/job/{jid} – Start the job execution

GET /get/status/job/{jid:.+} – Provides the processing status of a job

POST /update/status/job/{jid} – Updates the status of a job - to be called by the broker

An example XML job definition is the following:

1 <?xml version ="1.0" encoding="UTF -8"?>
2 <Job jid="" xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

xsi:noNamespaceSchemaLocation="Job.xsd">
3 <JobProperties CreationDate="2001-12-31T12:00:00" Owner="0"/>
4 <JobElement csid="ContentSetID" wfid="WorkflowID"/>
5 </Job>

Further information can be retrieved by accessing the online documentation at http://
mico-project.bitbucket.org/api/rest/?url=management.json.

46

http://mico-project.bitbucket.org/api/rest/?url=management.json
http://mico-project.bitbucket.org/api/rest/?url=management.json
http://mico-project.bitbucket.org/api/rest/?url=management.json
http://mico-project.bitbucket.org/api/rest/?url=management.json

3.7 Summary and Outlook

This section has outlined the challenges and status of the MICO broker, which includes solutions for all
of the core requirements mentioned in Section 3.1.

Within the remaining project lifetime, it is to be expected that several issues will emerge from further
testing based on the showcases demands, which will require further improvements of the broker. This
seems realistic considering not only the various showcase demands and the fact that additional showcase
demos have been planned in the meantime, but also the fact that there were many recent modifications
of the overall platform e.g. related to persistence, MICO model and event API.

Beyond the core functionalities, there are also many ideas for possible improvements which go (far)
beyond the original work planning, including

• advanced features for automatic process startup and management for scalability and distributed
resource allocation

• improved inclusion of human interaction during workflows (annotations, feedback, etc.)

• improvements regarding security and access control for content

• front-end for providing extractor information that cannot be provided at packaging time, including
feedback on extractor performance (complements the REST registration service)

• additional approaches regarding (semi-automatic) workflow creation

• full support for extractor and integrated workflow testing

• advanced workflow monitoring

Apart from the technical challenges, a key question for the MICO project will be on how to ensure
further support and development in these domains by project partners beyond the project lifetime, also
considering that there will be diverse demands especially from different commercial showcases.

47

4 Enabling Technology Modules for Cross-media Publishing

The recombination of various extraction results on one given multimedia file is a way of finding hidden
semantics. These can lead to a richer metadata background which allows the respective file to be used
in an even broader spectrum. Oftentimes however, this is not the case, as most multimedia analysis
components work in isolation and do not consider the input of other extractors. The MICO platform
allows to deal with this shortcoming by providing the possibility of orchestrating sets of extractors in
order to jointly analyse the same content, which then can lead to further metadata discovery. Rather than
publishing and storing the intermediary and final results in different proprietary formats, every extractor
in a MICO workflow publishes its results using the Resource Description Format RDF15. This allows
semantic interlinking and comprehensive querying with SPARQL. As a specifically for this use case
designed RDF ontology, the MICO Metadata Model MMM16. The model is based on the W3C Web
Annotation Data Model WADM 17; the second iteration of the model was introduced in report V4. It
allows to interlink the analysis results and track provenance over all workflow steps.

To facilitate the use of the MMM in the MICO platform, a software approach for an Object-to-
RDF (ORM) mapping was created. The open-source library Anno4j18 [Ber+16], which was already
introduced in report V3, allows the creation of MICO or generic W3C Web Annotations via plain Java
objects. Extensible querying is enabled using the path-based query language LDPath19, which is de-
scribed in a later section.

This section is structured as follows. Section 4.1 will give an in-depth description for the ORM
library Anno4j. It will cover persistence, partial behaviour implementation, querying, and additional
features added to the library. Afterwards, Section 4.2 introduces Anno4CPP, a conversion of the Anno4j
library to the C++ language, enabling C++ extractors to use the same functionality. The ideas are
explained considering the applicability for the MICO use case. Section 4.3 illustrates an extension to
the MICO Metadata Model, showing the RDF classes, properties, and relationships that have been added
in order to describe MICO extractors in a more detailed fashion. The last section, Section 4.4, will then
list ideas that arose from various lessons learned during the MICO project.

4.1 Anno4j - An Object to RDF Mapping

An initial hurdle for extractor developers is to familiarize themselves with the Semantic Web technolo-
gies and the MICO Metadata Model, which are necessary to integrate valid extractor results into the
MICO platform. Anno4j helps to overcome these problems by supporting the aforementioned ORM.
By utilising the mapping, extractor writers can both persist and query WADM or MMM conform anno-
tation results, without handeling the RDF content itself. The main “communication” is done via Java
POJOs. The library has been designed in a modular and extensible fashion, to support enhancements
and use-case specific model alterations, while the plugin functionality of Anno4j allows the enrichment
of querying by adding custom function evaluators. Anno4j follows natural Object-oriented idioms in-
cluding inheritance, polymorphism, and composition to facilitate the development of RDF ontologies,
like the MICO Metadata vocabulary. The following list summarises the core functionalities of Anno4j:

• Persistence: Simple Java objects provide the basis of persistence and can easily be created and
persisted with a given Anno4j object (see Section 4.1.1). By persisting an Anno4j Java object,

15https://www.w3.org/TR/rdf11-concepts/
16http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
17https://www.w3.org/TR/annotation-model/
18https://github.com/anno4j/anno4j
19http://marmotta.apache.org/ldpath/

48

https://www.w3.org/TR/rdf11-concepts/
http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
https://www.w3.org/TR/annotation-model/
https://github.com/anno4j/anno4j
http://marmotta.apache.org/ldpath/

corresponding RDF triples are created. This “basic persistence” can be extended in order to
support behaviours to the Java interfaces (see Section 4.1.2).

• Querying: A QueryService object created by an Anno4j instance can be augmented with differ-
ent query criteria (formalised as LDPath arguments) to query and consume respective RDF data of
the underlying SPARQL 1.1 endpoint (see Section 4.1.3). The response is turned into respective
(single or multiple) Java POJOs for further convenient usage.

• Transaction support: Transactional behaviour can be used to create sets of operations, which
can either be fully committed or not at all (see Section 4.1.4).

• Context awareness: RDF databases are often using different contexts to divide their data into
subgraphs. This feature is also possible in Anno4j, turning RDF triples into quads (see Section
4.1.4).

• Plugin Extensions: By supporting a plugin interface, users can define own LDPath functions in
combination with respective evaluation operators. These can be used as querying criteria in order
to even enhance the querying functionality and fine tune it to their particular use-case (see Section
4.1.4).

• Input and Output: Anno4j is able to both read and write annotations from and to different
standardised serialisations, such as JSON-LD, TURTLE, N3-Triples, RDF/XML, etc (see Section
4.1.4).

• MMM, MMMTerms & WADM implementations: Built-in and predefined implementations for
classes of the MICO Metadata Model and the W3C Web Annotation Data Model enable easy
access to respective ontologies and allow a quick start right away. MICO workflow specific body
implementations are included in the MMMTerms vocabulary.

4.1.1 Anno4j Persistence

Anno4j supports an object-relational-mapping (ORM) between RDF objects and Java POJOs. This is
mainly based on the Alibaba20 library, formerly known as the Elmo codebase, which is responsible for
the internal transformation between RDF and Java. Smaller tweaks have been made in order to adjust
the library to the requirements of MICO.

This section will describe how to do one direction of the ORM: from Java POJOs to RDF. Via
Anno4j, respective Java objects are turned into RDF automatically. Utilising this procedure, it is possible
to create one’s own RDF model - classes, properties, and relationships - and persist them. The other
direction, from RDF to Java POJOs in order to query for already stored data, is shown in Section 4.1.3.

Throughout the rest of this Anno4j documentation, we will stick to the exemplary use case of an
animal detection process. Therefore, we will produce annotations which indicate what animal has been
detected on a given image and the degree of confidence of the extractor about that statement. Figure
12 shows an example of a complete MICO Part annotation with the content of an animal detection. In
this example, a panda is found with a confidence of 85%. With its selector, only a fragment of the
supported picture is to be targeted by the Part annotation. It’s value is #xywh=20,25,200,300, which
corresponds to the fragment starting at top left pixel with the position (20,25) with a width of 200 pixels
and a height of 300 pixels.

20https://bitbucket.org/openrdf/alibaba/

49

https://bitbucket.org/openrdf/alibaba/

Figure 12 Exemplary RDF graph for an animal detection MICO Part annotation. This respective result
indicates that a panda was detected with a confidence of 0.85 on the given picture.

part

body

mmm:Part rdf:type

mmm:hasBody

mmm:Animal
DetectionBodyrdf:type

"panda"rdf:value

0.85mmm:hasConfidence

specRes mmm:Specific
Resourcerdf:type

mmm:hasTarget mmm:hasSource

selector oa:Fragment
Selectorrdf:type

mmm:hasSelector

"http://www.w3.org/TR/media-frags/" dcterms:conformsTo

"#xywh=20,25,200,300" rdf:value

picture

Anno4j supports implementations for most of the classes needed by the Web Annotation Data Model
WADM. On top of that, the MICO adaption adds all remaining classes, that were introduced by the
MICO Metadata Model MMM21 in order to produce the metadata of MICO workflows. Respective
body implementations can be found at the MICO Metadata Model Terms vocabulary22. Every RDF
node is implemented as an interface class in Anno4j. When creating an instance of it, the proxy pattern
is applied and a proxy object of the respective interface is generated. An interface can be implemented
in order to create a subclass, which is also reflected in the RDF graph.

When introducing a new kind of extractor or partial result for a given MICO workflow, the main
thing to implement for the persistence layer is a body class. Referring to the exemplary animal use case,
a body class with a type, a String field for the detected animal, as well as a double field for the given
confidence is needed. Anno4j supports the body interface (BodyMMM) that needs to be implemented in
order to be a body node. For every field, a getter/setter pair needs to be supported. Listing 1 shows the
basic interface frame that is needed for the desired animal detection body.

Listing 1: Basic interface frame for an animal detection body

// Interface for the animal detection body
public interface AnimalDetectionBody extends BodyMMM {

// Getter/setter pair for the confidence
void setConfidence(Double confidence);

Double getConfidence();

// Getter/setter pair for the detected animal
void setAnimal(String value);

String getAnimal();
}

21http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
22http://mico-project.bitbucket.org/vocabs/mmmterms/2.0/documentation/

50

http://mico-project.bitbucket.org/vocabs/mmm/2.0/documentation/
http://mico-project.bitbucket.org/vocabs/mmmterms/2.0/documentation/

In Listing 1, Line 2 shows the interface definition needed for the AnimalDetectionBody. The
definition must be an interface and must extend the BodyMMM interface (BodyMMM itself is an extension to
the basic Body class in Anno4j. This is an extension done by the MICO adaption to the WADM because
of typing purposes). Line 5 and 7 define the getter/setter pair for the confidence, while Line 10 and 12
do the same for the String field describing the detected animal. Note that for a desired field one can use
basic datatypes (and thereof only their wrapper classes) for the type of the field. The (Java-) naming of
the pair is can be chosen freely.

The next important step consists of the creation of the RDF relation. This is done by adding the Java
annotation @Iri at two specific locations to the interface:

• Above the interface definition: This defines the RDF type of the corresponding RDF node.

• At every getter/setter pair: This defines the relationship or property attached at instances of the
given RDF node.

Listing 2 is an alteration of the basic interface from Listing 1, adding the Java annotations @Iri at
three different occasions.

Listing 2: Basic interface extended with Iri annotations

// Iri refers to
http://www.mico -project.eu/ns/mmmterms /2.0/ schema#AnimalDetectionBody

@Iri(MMMTERMS.ANIMAL_DETECTION_BODY)
public interface AnimalDetectionBody extends BodyMMM {

// Iri refers to
http://www.mico -project.eu/ns/mmm/2.0/schema#hasConfidence

@Iri(MMM.HAS_CONFIDENCE)
void setConfidence(Double confidence);

@Iri(MMM.HAS_CONFIDENCE)
Double getConfidence();

// Iri refers to
http://www.w3.org/1999/02/22 -rdf -syntax -ns#value

@Iri(RDF.VALUE)
void setAnimal(String value);

@Iri(RDF.VALUE)
String getAnimal();

}

In Listing 2, Line 2 defines the type (RDF relationship rdf:type) for the defined interface
and respective RDF node. It is set to http://www.mico-project.eu/ns/mmmterms/2.0/sche-
ma#AnimalDetectionBody. The properties are defined to be of the relationship type
http://www.mico-project.eu/ns/mmm/2.0/schema#hasConfidence (in lines 6 and 9) and
http://www.w3.org/1999/02/22-rdf-syntax-ns#value (in lines 13 and 16) respectively. Note
here: Anno4j supports different RDF vocabularies via namespace classes that contain constants
for the namespace itself, its prefix, and all associated classes, relationships, and properties. The

51

MICO addition features a basic vocabulary for the MMM, as well as a vocabulary MMMTERMS
featuring MICO specific implementations. In this example, the three Iris can be exchanged with
MMMTERMS.ANIMAL_DETECTION_BODY, MMM.HAS_CONFIDENCE, and RDF.VALUE respectively.

In order to create the example Part annotation seen in Figure 12 in an Anno4j workflow, the code
shown in Listing 3 can be used.

Listing 3: Anno4j workflow to create a animal detection part annotation

// Create Anno4j instance
Anno4j anno4j = new Anno4j();

// Create single nodes
PartMMM part = anno4j.createObject(PartMMM.class);

AnimalDetectionBody body =
anno4j.createObject(AnimalDetectionBody.class);

body.setAnimal("panda");
body.setConfidence (0.85);

FragmentSelector selector =
anno4j.createObject(FragmentSelector.class);

selector.setConformsTo("http://www.w3.org/TR/media -frags/");
selector.setValue("#xywh=20,25,200,300");

SpecificResourceMMM specRes =
anno4j.createObject(SpecificResourceMMM.class);

// Set the source to the associated picture
specRes.setSource(... pictureURI ...);

// Join nodes together
part.setBody(body);
part.addTarget(specRes);
specRes.setSelector(selector);

4.1.2 Anno4j Partial Behaviour

An expressive feature that can be introduced in the Java-supported implementation of MICO’s metadata
storage is the establishment of behaviours. This behaviour can be executed before respective RDF
instances are created. An example for this is the check if a given value lies inside a predefined range.

To show the functionality and how to implement it, we utilise the interface that was created in
Section 4.1.1 for the animal detection, shown in Listing 2. The getter method to specify the confidence
(setConfidence(Double confidence)) is to be extended with the behaviour to only set values that
are between 0.0 and 1.0. Values above or below those boundaries are to be set to the respective
boundary value. The implementation is shown in Listing 4.

Listing 4: Support class implementing the AnimalDetectionBody interface shown in listing 2

@Partial

52

public abstract class AnimalDetectionBodySupport extends
ResourceObjectSupport implements AnimalDetectionBody {

@Iri(MMM.HAS_CONFIDENCE)
private Double confidence;

@Override
public void setConfidence(Double confidence) {

if(confidence < 0.0) {
this.confidence = 0.0;

} else if(confidence > 1.0) {
this.confidence = 1.0;

} else {
this.confidence = confidence;

}
}

@Override
public Double getConfidence() {

return this.confidence;
}

}

Important things to note in the implementation shown in Listing 4, and also when implementing
support classes altogether, are the following:

• Partial Java Annotation: The Partial annotation in Line 1 is necessary for project build reasons
and for the scanning of behaviours for other interfaces.

• Class Declaration: As method bodies are needed in order to implement the behaviour for the
methods, an abstract class is needed at this point.

• Implementation and Extension: Support classes implement the interface of which the behaviour
is to be implemented. Also, it needs an extension of the support class of the next lowest super
class (in this case, the ResourceObjectSupport).

• Connection to the RDF Graph: In order to establish the association with the corresponding
RDF properties and relationships, the respective field has to be defined as private field of the
abstract class. In the case of the example, Line 5 defines a Double field for the confidence, and
the appropriate Iri is defined in Line 4.
IMPORTANT NOTE: The Iris have to be removed from the implemented interface class!
(in this case from the AnimalDetectionBody interface)

• Overriding Methods: The methods in the support class need to overwrite those defined in the
implemented interface. Also, they can now implement the desired behaviour.

4.1.3 Anno4j Querying

The query feature of Anno4j implements the other direction of the ORM mapping between Java objects
and RDF. While the persistence described in Section 4.1.1 turns created Java POJOs into RDF triples,

53

an executed query at an Anno4j object retrieves the RDF information stored at the Anno4j’s triplestore
and returns a set of Java POJOs.

The central Java class for the querying is the QueryService, which can be created at a respective
Anno4j instance. Calling the .execute()-method of a QueryService creates a SPARQL query with the
query criteria (see below) that are added to the QueryService instance, and dispatches it to the associated
triplestore. A class parameter can be passed to the method in order to define the (RDF graph node) start-
ing point for the query. Classic examples in the MICO context would be .execute(ItemMMM.class)
or .execute(PartMMM.class) to query for Items or Parts respectively. The basic behaviour is to query
for annotations (of the type oa:Annotation). The return type of the method is a Java List of the speci-
fied class. Listing 5 shows an example of how to create and execute a QueryService.

Listing 5: Creation and execution of a QueryService

Anno4j anno4j = new Anno4j();

QueryService qs = anno4j.createQueryService();
List <ItemMMM > result = qs.execute(ItemMMM.class);

The criteria mentioned above shape the definition of a query. One can add different requirements
and confinements in order to fine tune the query and thereby specify which part of the RDF graph is
to be requested. To do this, we decided to implement the criteria using the path-based query language
LDPath (see Section 5 for a detailed description of LDPath). LDPath is well suited to query information
on an RDF graph. Additionally, rather than writing whole extensive SPARQL queries, it seemed more
convenient to non-RDF experts to define single criteria by writing LDPath expressions. Every LDPath
criteria defines a path in the RDF graph, which can be enhanced by different requirements, in order to
query for various nodes that comply with the defined criteria, a set of LDPath criteria is transformed into
respective SPARQL 1.1 queries. By transforming the LDPath expression to SPARQL, every SPARQL
1.1 compliant endpoint can be registered as RDF storage with an Anno4j instance.

As mentioned before, the QueryService is the central point of Anno4j’s querying feature. Once
created, a user can add different criteria to the QueryService to define the respective query. In order to
further enhance its usability, a fluent interface is implemented for the QueryService, allowing the user
to add the query criteria bit by bit instead of having to define them all at once, which we assume to be
more convenient.

However, before one can start to define queries, it is necessary to register all respective namespaces
with its corresponding abbreviation. This enables to use the abbreviations instead of having to support
the full URI every time. Like before, Anno4j already supports the common RDF standards, they must
not be set beforehand. The predefined namespaces are listed in table 10.

To add your personal namespace, the .addPrefix(String abbreviation, String uri)
method of a given QueryService is used. The namespace is then registered and can be used at
various locations of the supported LDPath criteria. Adding a prefix can also be integrated in the
fluent interface of the QueryService. An example can be seen in Listing 6, adding the namespace
“http://www.example.com/schema#” with the abbreviation “ex”.

Listing 6: Registering of a custom prefix at a QueryService

QueryService qs = anno4j.createQueryService();
qs.addPrefix("ex", "http://www.example.com/schema#");

In order to fine-tune a query, the already mentioned query criteria formalised as LDPath expression
have to be added to the QueryService. Listing 7 shows an example, adding various query criteria to a

54

Table 10 Predefined Namespaces for a QueryService

Abbreviation Namespace
oa <http://www.w3.org/ns/oa#>
cnt <http://www.w3.org/2011/content#>
dc <http://purl.org/dc/elements/1.1/>

dcterms <http://purl.org/dc/terms/>
dctypes <http://purl.org/dc/dcmitype>

foaf <http://xmlns.com/foaf/0.1/>
prov <http://www.w3.org/ns/prov/>
rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs <http://www.w3.org/2000/01/rdf-schema#>
skos <http://www.w3.org/2004/02/skos/core#>

given QueryService. The query relates to the animal detection results shown in Figure 12. Formulated
as text, we want our query to be defined by the following requirements:

1. Query for Parts of the database only,

2. Query for results of the animal detector, so Part annotations with a body node of the type
mmm:AnimalDetectionBody,

3. Query for pandas only,

4. Query for rectangles exactly of a width of 200 pixels and a height of 300 pixels (this criteria is
rather unusual, it is merely used for exemplary purposes, more reasonable spatial or temporal
logic can be introduced with plugins, see section 4.1.4).

Listing 7: Addition of various query criteria to a QueryService

QueryService qs = anno4j.createQueryService();
qs.addPrefix("mmm", "http://www.mico -project.eu/ns/mmm/2.0/schema#")

.addCriteria("mmm:hasBody[is-a mmm:AnimalDetectionBody]")

.addCriteria("mmm:hasBody/rdf:value", "panda")

.addCriteria("mmm:hasTarget/mmm:hasSelector/rdf:value",
"200,300", Comparison.ENDS_WITH);

List <PartMMM > result = qs.execute(PartMMM.class);

Line 2 of Listing 7 defines the namespace “http://www.mico-project.eu/ns/mmm/2.0/schema#”
with the abbreviation “mmm” that is needed in order to use the following query criteria (because they
will write “mmm:” instead of the whole namespace). After that, in Lines 3 through 5, different criteria
are defined and added to the QueryService. The first criteria (satisfying requirement number two in the
preceding enumeration) in Line 3 is used in order to define the RDF type of the associated body node
(which in terms defines the “type” of the whole Part annotation). Therefore, the LDPath expression
constitutes “hops” from the root over the edge mmm:hasBody to the body node and then does a type

55

Figure 13 Graph-based visualisation of the LDPath expression “mmm:hasBody[is-a
mmm:AnimalDetectionBody]”.

part

body

mmm:Part rdf:type

mmm:hasBody

mmm:Animal
DetectionBodyrdf:type

"panda"rdf:value

0.85mmm:hasConfidence

specRes

mmm:hasTarget

check for the node type (relationship rdf:type) to be a mmm:AnimalDetectionBody. Figure 13 shows
a visualisation of the path.

Line 4 of Listing 7 satisfies the requirement of looking for pandas. Therefore, the path to the body
is again defined by the first “hop”, then the value of its rdf:value relationship is compared against the
String “panda”. In this case, only a full String equality is tested. Figure 14 shows a graph visualisation.
There are possibilities for other String comparisons, namely contains, starts with, and ends with.
The basic behaviour (when no comparison operator is supported as third parameter) is set to exact match.

Figure 14 Graph-based visualisation of the LDPath expression “mmm:hasBody/rdf:value”.

part

body

mmm:Part rdf:type

mmm:hasBody

mmm:Animal
DetectionBodyrdf:type

"panda"rdf:value

0.85mmm:hasConfidence

specRes

mmm:hasTarget

Requirement 4 is targeted at the fragment of the picture, so the path is directed to the target side of the
given Part. It tests, if the supported fragment of the respective selector does match the size of 200 pixels
width to 300 pixels height. Therefore, three “hops” in the graph are required (namely mmm:hasTarget,
mmm:hasSelector, and rdf:value), in order to read the respective supported fragment. By using a
String ends with-comparison, the last two parameters of the fragment (for width and height respec-
tively) are compared. Those have to match the defined query. Figure 15 shows the graph visualisation
for the last criteria.

The last requirement - to query for part annotations only - is satisfied by the execution call in Line
7, as the parameter for the starting point to query is set to PartMMM.class in the .execute()-method.

4.1.4 Anno4j Extended Features

The basic functionality of the ORM library Anno4j in order to query and persist RDF via Java POJOs
has been covered in Section 4.1.1 and Section 4.1.3. The following sections will describe features
that have been implemented for convenience purposes or to integrate a richer RDF feature support.

56

Figure 15 Graph-based visualisation of the LDPath expression “mmm:hasTarget/mmm:hasSelec-
tor/rdf:value”, which is compared to end with the String “200,300”.

part

body

mmm:Part rdf:type

mmm:hasBody

specRes mmm:Specific
Resourcerdf:type

mmm:hasTarget mmm:hasSource

selector oa:Fragment
Selectorrdf:type

mmm:hasSelector

"http://www.w3.org/TR/media-frags/" dcterms:conformsTo

"#xywh=20,25,200,300" rdf:value

picture

The additions are namely: transactional behaviour, subgraphs and contexts, plugin extensibility, and
input/output functionality.

• Transaction Support
The Anno4j library features a transactional behaviour, enabling a user to create sets of actions,
that either are done completely (commit) or not at all (rollback). The set becomes atomic. This
enables the database to be consistent at any time, a possible client crash in the middle of its
work procedure does not create an unclean or untraceable state of data. The basic behaviour
(if no Transaction object is used) is set to auto-commit, so every action is persisted at the
respective database automatically. A transaction itself has to be started (method .begin()) and
then commited (method .commit()) or rolled back (method .rollback()). Listing 8 shows
an example, that creates, begins, and ends a transaction while showing the possibility to create
objects and a QueryService.

Listing 8: Use of a Transaction in Anno4j.

Anno4j anno4j = new Anno4j();

Transaction transaction = anno4j.createTransaction();
transaction.begin();

// Create and query using the Transaction object
ItemMMM item = transaction.createObject(ItemMMM.class);
QueryService qs = transaction.createQueryService();

transaction.commit(); / transaction.rollback();

• Subgraphs and Contexts
A convenient feature of RDF is the use of contexts, that allow users to split their whole RDF
graph into smaller contextualised subgraphs. Therefore, RDF triples are turned into so called
quads, which have a fourth component after subject, predicate, and object that implements the
URI of the subgraph the triple is to be contained in.

57

In Anno4j, the context can be utilised in one of two ways:

– Anno4j instance level: Two out of the four possible methods to create an object
(createObject(...)) support an URI parameter standing for the context. Creating
an object this way will insert it in the respective subgraph.

– Transaction level (see Section 4.1.4 for transactions): Every Transaction object supports a
setAllContexts(String uri) method, which defines the subgraph that the transaction is
to write to and read from.

Listing 9 shows two examples using a specific context. Line 1 defines a new URI for a respective
subgraph, while Line 4 creates an ItemMMM object in that subgraph. Line 7 creates a Transaction
object and Line 8 changes its context to the defined context uri.

Listing 9: Setting a context for an Anno4j and Transaction object.

URI uri = new URIImpl("http://www.somePage.com/");

// Create an Item in the uri context
ItemMMM item = anno4j.createObject(ItemMMM.class , (Resource)

uri);

// Create a Transaction object and define its context to uri
Transaction transaction = anno4j.createTransaction();
transaction.setAllContexts(uri);

• Plugin Extensions
A plugin in the Anno4j context means the addition of an LDPath function in combination with
underlying query logic. The logic will be evaluated at the point of time a query is executed.
Because of this, the size of the result can be confined beforehand, rather than picking out the
desired single entries afterwards on a bigger result set. In order to implement a plugin, the user
has to define the LDPath function expression (QueryExtension), as well as the querying logic
(TestEvaluator). An exemplary expression (taken from SPARQL-MM[KSK15]) can be seen
in Listing 10. Integrating that criteria could lead to a result set of only those annotations, that
detected both an elephant and a lion standing next to each other, the elephant found to the left side
of the lion.

Listing 10: Exemplary plugin expression in an LDPath criteria.

QueryService qs = anno4j.createQueryService();

qs.addCriteria("sparqlmm:leftBesides(\"elephant\", \"lion\")");

• Input and Output
To improve the usability of the library, a small extension to the ORM has been implemented.
Users can parse their RDF triples formulated in various RDF serialisations to create the respective
Java objects, as well as write their Java objects as serialised RDF triples. Among the available
serialisations are rdf/xml, ntriples, turtle, n3, jsonld, rdf/json, etc. So the mapping is “extended”,
a textual component is added:

58

Figure 16 Extension to the ORM mapping of Anno4j.

Java POJO
 ex:anno1 a oa:Annotation
 oa:hasBody ex:body1
 oa:hasTarget ex:target1

RDF

In order to read a given RDF annotation (available as Java String), an ObjectParser object
is needed. Its .parse(String annotation, String uri, RDFFormat format) requires the
annotation as String, a uri for namespacing, and the supported format. It will then return a Java
List of all parsed Annotations. Important to note is that all RDF nodes that are to be parsed need
to be supported as respective Anno4j interfaces.

The ObjectParser holds all parsed annotations in a local temporary memory store. In order to
persist them to your respective database, they have to be read from the parser and be persisted “by
hand” then. Listing 11 shows an example reading a simple turtle annotation with a (empty) body
and target associated.

Listing 11: Reading an annotation from RDF a given turtle serialisation.

String TURTLE = "@prefix oa: <http://www.w3.org/ns/oa#> ." +
"@prefix ex: <http://www.example.com/ns#> ." +

"ex:anno1 a oa:Annotation ;" +
" oa:hasBody ex:body1 ;" +
" oa:hasTarget ex:target1 .";

URL url = new URL("http://example.com/");

ObjectParser objectParser = new ObjectParser();
List <Annotation > annotations = objectParser.parse(TURTLE , url ,

RDFFormat.TURTLE);

objectParser.shutdown();

To write a given Anno4j Java object to respective RDF serialisations, the ResourceObject inter-
face (which every Anno4j object descends from) supports a .getTriples(RDFFormat format)
method, which returns the representation of the object as a Java String in the supported format.
Listing 12 shows an example that writes a given item as turtle triples.

Listing 12: Writing a given Java item as turtle RDF serialisation.

ItemMMM item = anno4j.createObject(ItemMMM.class);
...
String itemAsTurtle = item.getTriples(RDFFormat.TURTLE);

59

4.2 Anno4CPP - C++ Proxy for Anno4j

While the usage of anno4cpp has been described already in Section 2.6.7, this one is about the un-
derlying system making the Java anno4j framework available for the MICO C++ API and the MICO
extractors as shown in Figure 1.

In order to automatically create C++ proxy classes representing all Java classes required to do anno-
tations, we use a modified version of a tool called “JNIPP” (Original version: https://github.com/
mo22/jnipp, MICO modified version: https://bitbucket.org/mico-project/jnipp). The tool
receives a list of Java classes and generates C++ class proxies that use JNI as inner implementation.
We extended “JNIPP” such that it is able to translate Java packages into C++ namespaces which avoids
complicate class name mangling in the generated C++ classes. In order to retrieve the list of classes to
be used, we developed a tool called “javadeps” (https://bitbucket.org/mico-project/javadeps)
which takes a Java jar as input and generates a list of classes this input jar depends on. For the creation
of such a jar an application was implemented called "‘anno4jdependencies"’using all required “anno4j”
and “Sesame” classes (https://bitbucket.org/mico-project/anno4cpp) and applied “javadeps”
to it. The standard Java classes have also been added manually to the list. The C++ code generated by
“JNIPP” out of the “anno4jdependencies.jar” is compiled into a static library and linked to the MICO
C++ Persistence API which loads the JVM with the “anno4jdependencies.jar” and then can use the code
through the proxies.

The whole generation process is managed by the anno4cpp project which takes care of fetching the
generation tools, creating the proxies and producing the static library. The C++ MICO platform API
build environment triggers the anno4cpp generation process during the build and takes care of using
the correct version of the Java packages (e.g. mmm-anno4j, anno4j, etc.) by evaluating the Java API
dependencies. Figure 17 shows a diagram of the process.

4.3 MMM Extension - Extractor Model

In the course of the evolution of the MICO Broker (see Section 3), the necessity for an extension to the
MICO Metadata Model arose in order to incorporate more detailed information about the extractors of
MICO workflows. Initial ideas have been documented in previous reports. An extractor is connected
to its corresponding Part via the oa:serializedBy relationship. The supported information is aligned
with the broker model depicted in Figure 5, which should be considered for details. The following
RDF classes, relationships, and properties have been introduced to the MMM (all of the share the same
namespace "http://www.mico-project.eu/ns/mmm/2.0/schema#"):

• Extractor: Class for an extractor in the MICO universe. An extractor is associated with ex-
actly one hasName, hasVersion, and hasStringId property, and can have multiple Mode nodes
attached via the hasMode relationship.

• hasName: The (MICO) name of the associated node.

• hasVersion: The (numerical) version of the associated node.

• hasStringId: The (uniquely identifiable) Id of the associated node, represented as String.

• hasMode: The relationship between a Extractor and its 0 to multiple Mode nodes.

• Mode: The mode of a given extractor. An extractor can have different modes that are dis-
tinguished by means of their parameters and IO data. A mode is associated with exactly

60

https://github.com/mo22/jnipp
https://github.com/mo22/jnipp
https://bitbucket.org/mico-project/jnipp
https://bitbucket.org/mico-project/javadeps
https://bitbucket.org/mico-project/anno4cpp

Figure 17 Overview of the proxy generation process for anno4cpp.

anno4jdependencies.jar

jnipp.jar

javadeps.jar

Contains a program using required
anno4j and sesame features and all java related

packages deployed as fat JAR

Java class list

applied to

augmented Java class list

adds classes to

produces

produces

reads

C++ class proxies

produces

compile to

libmico-persistence
native static library

anno4cpp
links against

loads via JVM

61

one hasConfigSchemaURI, hasOutputSchemaURI, hasStringId, and hasDescription prop-
erty, and has possibly multiple Input, Output, and Param nodes attached via the relationships
hasInputData, hasOutputData, and hasParam respectively.

• hasConfigSchemaURI: The URI where the config schema is to be found.

• hasOutputSchemaURI: The URI where the output schema is to be found.

• hasDescription: The (textual) description of the associated extractor detail.

• hasInputData: The relationship between a Mode and its associated Input node. One mode can
have 0 to multiple hasInputData relationships associated.

• hasOutputData: The relationship between a Mode and its associated Output node. One mode
can have 0 to multiple hasOutputData relationships associated.

• hasParam: The relationship between a Mode and its associated Param node. One mode can have
0 to multiple hasParam relationships associated.

• IOData: Superclass for the Input and Output classes. Every IOData node has exactly one
hasIndex and hasCmdLineSwitch property associated. Additionally, it can have 0 to multiple
hasMimeType, hasSemanticType, and hasSyntacticType relationships added.

• hasIndex: The (numerical) index for the associated node.

• hasCmdLineSwitch: The command line switch for the associated node.

• hasMimeType: The relationship between a IOData node and a given MimeType node. There can
be 0 to multiple hasMimeType relationships.

• hasSemanticType: The relationship between a IOData node and a given SemanticType node.
There can be 0 to multiple hasSemanticType relationships.

• hasSyntacticType: The relationship between a IOData node and a given SyntacticType node.
There can be 0 to multiple hasSyntacticType relationships.

• Input: Subclass of IOData, representing an input requirement.

• Output: Subclass of IOData, representing an output requirement.

• MimeType: Class represents a mime type for a given IOData node. Has a
hasFormatConversionURI and hasStringId property associated.

• hasFormatConversionURI: The URI that links to a defined format conversion.

• SemanticType: Class represents a semantic type of a given IOData node. Has exactly one
hasName, hasDescription, and hasSemanticTypeURI property associated.

• hasSemanticTypeURI: The URI linking to the given semantic type.

• SyntacticType: Class represents a syntactic type of a given IOData node. Has exactly one
hasAnnotationConversionSchemaURI, hasDescription, and hasSyntacticTypeURI prop-
erty associated. Syntactic types can also link to 0 to multiple mime types via the hasMimeType
relationship.

62

• hasAnnotationConversionSchemaURI: The URI that links to the annotation conversion
schema.

• hasSyntacticTypeURI: The URI linking to the syntactic type.

• Param: Class represents a parameter of a given Mode node. A parameter has exactly one
rdf:value and hasName property associated.

Figure 18 shows an example for the extractor vocabulary, illustrating a MICO audio demux extractor.
For the sake of clarity, some nodes were left out (e.g. the rdf:type relationships, as the nodes are
named equivalently, and for the example less important properties like conversion URIs). The extractor
has two modes, mode1 and mode2, which can have different settings, but in general deal with a similar
task. In this example, the sampling frequency for the resulting audio file can differ (depending on what
parameter has been defined by the extractor creator). Mode2 is defined to take different video files as
input, and produces audio as output, with a defined frequency of 16000.

Next to the whole extractor specific additions to the MMM, we also added an additional relationship
mmm:serializedWith for semantical correctness, which connects a given Part node to the Mode of
an extractor, that was responsible for its extraction. The edge is also included in Figure 18.

• mmm:serializedWith: The relationship between a Part and the Mode that was responsible for
its extraction process. There can only be exactly one mmm:serializedWith relationship.

4.4 Conclusion and Outlook

This section contains a collection of lessons learned that have been gathered for the work done in WP3.
They are related to different topics of WP3 and are discussed in short and in regards to their applicability
to the current status of the MICO project and beyond.

4.4.1 RDF Schema Enhanced Object-RDF-Mapping

The creation of Anno4j classes requires time. Additionally, at the current state, it is not possible to get
an RDF schema out of the created classes. An "RDF Schema is a semantic extension of RDF. It provides
mechanisms for describing groups of related resources and the relationships between these resources.
RDF Schema is written in RDF [...]. These resources are used to determine characteristics of other
resources, such as the domains and ranges of properties.", as described in [BG14].

Both the creation of RDF Schema out of existing Anno4j classes as well as the other direction
– the generation of Anno4j classes out of existing RDF Schemata – are interesting approaches. To
automatically create a schema allows easier integration of implemented ontologies for third parties, as
the schema already includes a lot of crucial information of how to use the classes, relationships, and
properties defined in the ontology. At the current state, the RDF schema is created by hand, which is
deemed to be faulty.

The possibility of creating Anno4j classes out of RDF schemata enhances the base idea of Anno4j,
which is to “connect” non-RDF and non-SPARQL experts to the Semantic Web. By allowing the inte-
gration of RDF Schema-based creation, the other side of this idea gets included: users who are already
familiar with RDF, who might have already created ontologies and maybe schemata, can easily integrate
their knowledge into the Anno4j concept. Consequently, their ontology can be made accessible to the
non-RDF experts.

63

Figure 18 Exemplary RDF output for an audio demux extractor.

64

4.4.2 Validation of Created Metadata

This point is closely related to the one taken in Section 4.4.1. The invocation of criteria defined in RDF
or OWL schemata could lead to a validation of the objects created by Anno4j classes and structures. In
general, the validation of triples is a crucial point and is done via the implementation of an RDF schema.

At the current state, the only way to do validation in Anno4j is implementing the behaviour yourself
via the Partial implementations (see Section 4.1.2), which might be a cumbersome task. An envisioned
possibility for this task is to implement the desired RDF or OWL schema restrictions directly via Java
annotations. These could be checked at point of creation of the respective Anno4j object or a whole
transaction. Warnings or errors could then be communicated and handled accordingly. As an example,
consider Listing 13, which introduces the Java annotation @OWLMaxCardinality(x). Before according
Anno4j instances are persisted, the specified OWL annotations are checked for their conformance.

Listing 13: Exemplary Anno4j interface implementing an envisioned OWL annotation

@Iri("http://example.org/schema#Child")
public interface Child extends ResourceObject {

@OWLMaxCardinality(2)
@Iri("http://example.org/schema#hasParent")
void setParents(Set<Parent > parents);

@OWLMaxCardinality(2)
@Iri("http://example.org/schema#hasParent")
Set<Parent > getParents();

}

4.4.3 Visualisation of Queried RDF Results

One of Anno4j’s core contributions is to bring the technologies of the Semantic Web closer to those who
are not yet familiar with mainly RDF and SPARQL. However, as persistence and querying is covered
for the most part, there exists another component or barrier which could be difficult for non-Semantic
Web experts: actually using or analysing the data that they create and request, as the data generally is
presented in the form of classic RDF triples.

One possibility to solve this problem is to visualisations that let the user interact and explore the data
on her own. Supporting graphs and, whenever possible, the underlying multimedia data in combination
with its respective annotations could bridge the mentioned shortcoming. There are two approaches that
are in progress right now.

The first approach is an extension to the Baloon Synopsis23 implementation (see also [Sch+14b],
[Sch+14a]) and is mainly used for demo purposes. Synopsis is a JQuery plugin and supports a node-
centric RDF viewer designed in a modern tile design. As it is implemented in a modular way, filters
and new views can easily be integrated in order to adapt the viewer to the MICO use case with Items,
Parts, and Annotations. Figure 19 shows a screenshot of Synopsis, adapted to the MICO use case of an
animal detection. Aggregated information can already be displayed at higher layers of the MMM graph,
making it much easier for the user to step through the graph and understand the contained semantics. In
this case, the picture that an extraction workflow has worked on is directly displayed in addition to the
item URI. The plugin uses different colours for the tiles according to their information closeness. Every

23http://schlegel.github.io/balloon/balloon-synopsis.html

65

http://schlegel.github.io/balloon/balloon-synopsis.html

Figure 19 Screenshot of the Baloon Synopsis Plugin, adapted to animal detection use case, showing
item query level

tile represents an RDF triple and is clickable, leading to a query of the respective triple. This way, the
user can navigate through the presented graph.

Figure 20 shows the Synopsis result after the user has clicked on a given item to get further informa-
tion about that item. In this case, the item contains the analysis results of the animal detection extractor,
which would be contained in the body node of the part. This information is aggregated at part level in
order to facilitate the navigation through the RDF once more.

The second approach is realised as a bachelor’s thesis at the University of Passau and should be
considered as a more thorough approach, as it is designed directly for the MICO use case. However it
will not be finished during the period of the MICO project. Initial ideas and thoughts are to be presented
here. The approach is inspired by the explorative ideas of mindmaps. Mindmaps are a way of structuring
ideas and thoughts in a tree-like or graph-like fashion. Oftentimes, these get big and extensive quite fast,
so a good way of exploring them is needed. Some implementations only allow to view a part of the graph
at a time, by clicking different nodes and points in the graph, the view is adapted. This idea is perfectly
applicable for RDF graphs and especially the structure that is created by the MICO Metadata Model.
With a starting point of the Item at top level, Parts and respectively their Annotations are to be explored
“by hand” by the user. Figure 21 shows a first idea (displaying a D324 supported visualisation), of how
the RDF graphs could be visualised. After selecting one item (which is then representing the node in the
center), all of its Parts are arranged around it. After selecting a Part or group of Parts, the view changes
and displays its content in a more detailed fashion. At this point, possibilities emerge that can further
enhance the degree of information of an Annotation. Especially in the MICO use case, the information

24https://d3js.org/

66

https://d3js.org/

Figure 20 Screenshot of the Baloon Synopsis Plugin, adapted to animal detection use case, showing
part query level

that is extracted out of multimedia data can be integrated into the visualisation and its node-centric
display.

67

Figure 21 Exemplary D3 RDF graph visualisation. Picture adapted from http://flowingdata.com/
2012/08/02/how-to-make-an-interactive-network-visualization/.

68

http://flowingdata.com/2012/08/02/how-to-make-an-interactive-network-visualization/
http://flowingdata.com/2012/08/02/how-to-make-an-interactive-network-visualization/

5 Enabling Technology Modules for Cross-media Querying

The MICO project is about extracting information of various kinds from a broad range of media types
like images, video, sound, and text, which is elaborated exhaustively in Section 2. This information is
represented in a unified data model, which is based on W3C recommendation efforts around web annota-
tions, which is described in Section 4. To retrieve parts of such information that satisfy use case specific
needs users require a well defined toolkit for query formalization. In this report we describe three main
contributions we did within the project and give hints and examples how to use the technology:

SPARQL-MM Extensions

In the past specification reports (Volume 2, Volume 4) we focused on Multimedia Information Retrieval,
namely the SPARQL extension SAPRQL-MM [KSK15], which adds special relation-, aggregation- and
accessor-functions for spatio-temporal media fragments to the de-facto standard query language for
RDF. This extension has been lately released in version 2.025. In this report we provide a compressed
but exhaustive function list, outline the new features explicitly and give some usage examples.

Linked Data Information Retrieval

In some cases SPARQL is not the best solution for all use cases due to its complexity and steep learning
curve. Especially when projects try to hide such complexity in order to be attractive to a broad commu-
nity there is a need of solutions that offer a good tradeoff between feature completeness and simplicity
in usage. This was the main reason for Anno4J (described in section 4) to integrate LDPath, a simple
path-based query language, similar to XPath [CD99] or SPARQL Property Paths [HS13]. In this re-
port we exhaustively introduce this query language, which we intentionally developed for querying and
retrieving resources from the Linked Data Cloud. We outline the theoretical foundations of LDPath,
define an exact Syntax Definition and give usage examples. Furthermore we give an overview on other
projects that utilize LDPath in order to emphasize its versatility.

Semantic Media Similarity

As a third contribution we describe in this report a novel approach for media fragment similarity and give
examples how this technology can be used. Even if this is a very early stage of the work it gives a good
impression of the ongoing research and development in order to bring the web of data and multimedia
even closer together.

5.1 SPARQL-MM Extensions

As described in former MICO Technical Reports, SPARQL-MM is a Multimedia Extension for
SPARQL 1.1. Currently there are two implementations. One is based on Sesame (a higher level
RDF API) and the other is integrated in Apache Marmotta and is optimized by using native fea-
tures of the KiWi Triplestore and the underlying Postgres database. Both implementations have the
same feature range. The features have been specified in report V2 and V4 and are explained in de-
tail in report V3. In this section we do some recap and explain new features of the language ver-
sion 2.0. In order to provide a smooth entry we start with a simple 2-steps tutorial. As in former
reports we skip the SPARQL Prefix section for the matter of readability. All namespaces can be

25https://github.com/tkurz/sparql-mm/releases/tag/sparql-mm-2.0

69

https://github.com/tkurz/sparql-mm/releases/tag/sparql-mm-2.0

looked up on http://prefix.cc. Note, that for SPARQL-MM 2.0 functions we use the prefix mm:
<http://linkedmultimedia.org/sparql-mm/ns/2.0.0/function#>.

Step 1: Add dependency

The main reference implementation of SPARQL-MM is based on Sesame and thus uses SPARQL func-
tion extension mechanism. It is an in-memory implementation and not made for huge datasets but good
for using it in smaller use case environments. The release is provided for open usage in Maven Cen-
tral http://repo1.maven.org/maven2/com/github/tkurz/sparql-mm/2.0/. This enables you as
a user to include the lib via several dependency frameworks. In case of using Maven add the following
lines to your pom.xml:

<dependency >
<groupId >com.github.tkurz </groupId >
<artifactId >sparql -mm</artifactId >
<version >2.0</version >

</dependency >

The functions are loaded via Java Service Loader, so you do not have to add it explicitly but can use it
out of the box.

Step 2: Use it

This example assumes that you already added Sesame dependencies to your project. The example shows
a simple test class that uses SPARQL-MM. If you run the example the duration of the media fragment
(5.0 in this case) is printed on the command line.

public class SPARQLMMTest {

public static void main(String [] args) throws Exception {

String data = "<http:example.org/s> <http://example.org/p>
<http://example.org/o#t=5,10> .";

String query = "PREFIX mm:
<http://linkedmultimedia.org/sparql -mm/ns/2.0.0/ function#>" +

"SELECT ?duration WHERE {" +
" ?s ?p ?o. " +
" BIND(mm:duration(?o) AS ?duration)" +
"}";

//init repository
Repository repository = new SailRepository(new MemoryStore());
repository.initialize();

//import data
RepositoryConnection connection = repository.getConnection();
connection.add(new StringReader(data),"http://example.org/",

RDFFormat.TURTLE);

70

http://prefix.cc
http://repo1.maven.org/maven2/com/github/tkurz/sparql-mm/2.0/

connection.commit();

//query
TupleQueryResult res =

connection.prepareTupleQuery(QueryLanguage.SPARQL ,
query).evaluate();

System.out.println(res.next().getBinding("duration")
.getValue().stringValue());

//close repository
connection.close();
repository.shutDown();

}
}

SPARQL-MM 2.0 feature set

All existing features are listed in the feature matrix in Tables 12, 11 and 13. The shortname for parameter
types are Spatial Entity, Temporal Entity, Spatial-Temporal Entity (ST), Point, STRing, Boolean, and
Decimal. * defines a wildcard and + means one or more instances of a specific type are accepted
as parameter. A detailed description of all features can be found on https://github.com/tkurz/
sparql-mm/blob/master/ns/2.0.0/function/index.md. In this section we especially focus on
the new features that are included by evaluating the lessons learned. Extended Accessors
In SPARQL-MM 2.0 we added several accessor functions that allow the usage of information hidden in
Media Fragments. Now users can get information on shapes and timestamps, like duration, start, end,
area and center point. Additionally the language now allows surface checks, e.g if a value is a media
fragment, a fragment URI or if it includes spatial and/or temporal parts. The following query gets the
fragment with the largest area and for a specific image. Thereby the system selects all fragments ?f on
an image, sorts it by area and selects the largest one.

SELECT ?fragment WHERE {
ex:image ma:hasFragment ?f
BIND (mm:area AS ?area)

}
ORDER BY DESC(?area)
LIMIT 1

Name Conflicts cleanup

In the former SPARQL-MM function the naming of several functions has been missleading. Namely
there have been conflicts in the equals, contains and overlaps function because they are used for
spatial, temporal and combined queries. This conflicts have been fixed by using a consistent naming
schema, whereby clashing spatial functions are prefixed with spatial and temporal functions by tempo-
ral.

71

https://github.com/tkurz/sparql-mm/blob/master/ns/2.0.0/function/index.md
https://github.com/tkurz/sparql-mm/blob/master/ns/2.0.0/function/index.md

The Pixel-Percent Issue

When using pixel and percentage as dimensional units in parallel there have been calculation problems
in version 1.0. More precisely relation functions failed when using different units for evaluation and
produced false negatives. To overcome these problems we introduce pixel-to-percent and percent-to-
pixel conversion functions. In the listed example we align the units before using well known SPARQL-
MM functions. Note, for a proper alignment the width and height of a image has to be materialized in
the data space as pixel values.

SELECT DISTINCT ?x WHERE {
?x ma:hasFragment ?f1, ?f2.
?x ma:width ?w.
?x ma:height ?h.
BIND (mm:toPixel(?f1,?w,?h) AS ?pf1)
BIND (mm:toPixel(?f2,?w,?h) AS ?pf2)
FILTER mm:spatialEquals(?pf1 ,?pf2)
FILTER(?f1 != ?f2)

}

Table 11 SPARQL-MM Aggregation Functions

Type Name Url Params Return

Spatial boundingBox mm:spatialBoundingBox S+ S
intersection mm:spatialIntersection S,S S

Temporal
boundingBox mm:temporalBoundingBox T+ S
intersection mm:temporalIntersection T,T T
intermediate mm:intermediate T,T T

General boundingBox mm:boundingBox ST+ ST
interstion mm:intersection ST,ST ST

72

Table 12 SPARQL-MM Relation Functions
Type Name Url Params Return

Spatial:Topological

equals mm:spatialEquals S,S B
disjoint mm:disjoint S,S B
touches mm:touches S,S B
contains mm:spatialContains S,S B
covers mm:covers S,S B
intersetcs mm:intersects S,S B
within mm:within S,S B
coveredBy mm:coveredBy S,S B
crosses mm:crosses S,S B
overlaps mm:spatialOverlaps S,S B

Spatial:Directional

leftBeside mm:leftBeside S,S B
rightBeside mm:rightBeside S,S B
above mm:above S,S B
below mm:below S,S B
leftAbove mm:leftAbove S,S B
rightAbove mm:rightAbove S,S B
leftBelow mm:leftBelow S,S B
rightBelow mm:rightBelow S,S B

Temporal

preceeds mm:preceeds T,T B
meets mm:meets T,T B
overlaps mm:temporalOverlaps T,T B
finishedBy mm:finishedBy T,T B
contains mm:temporalContains T,T B
starts mm:starts T,T B
equals mm:temporalEquals T,T B
ends mm:ends T,T B
startedBy mm:startedBy T,T B
during mm:during T,T B
finishes mm:finishes T,T B
overlapedBy mm:overlapedBy T,T B
metBy mm:metBy T,T B

General
equals mm:equals ST,ST B
overlaps mm:overlaps ST,ST B
contains mm:contains ST,ST B

73

Table 13 SPARQL-MM Accessor Functions
Type Name Url Params Return

Spatial

spatialFragment mm:spatialFragment * STR
hasSpatialFragment mm:hasSpatialFragment * B
area mm:area S D
hight mm:hight S D
width mm:width S D
xy mm:xy S P
center mm:center S P

Temporal

temporalFragment mm:temporalFragment * STR
hasTemporalFragment mm:hasTemporalFragment * B
duration mm:duration T D
start mm:start T D
end mm:end T D

General

mediaFragment mm:mediaFragment * STR
isMediaFragment mm:isMediaFragment * B
isMediaFragmentURI mm:isMediaFragmentURI * B
toPixel mm:toPixel ST ST
toPercent mm:toPercent ST ST

74

5.2 Linked Data Information Retrieval

As described in Del. 4.1.1 there a two major streams of Semantic Web Query Languages. The first
stream handles the Semantic Web as a set of triples (or quadruples in some cases) and have with
SPARQL their major representative. The second stream focuses on the graph character of the Semantic
Web, which is why its representatives are called RDF Graph Traversal Languages. Similar to graph
database query languages like Cypher26 or Gremlin [MD13], they start from base nodes (or resources)
and use the outgoing links to compose query results while traversing the Web. This second stream is
still in its beginnings but convinces by two major advantages:

database transparency: Graph Traversal Languages transparently support query federation over well
known and widely used standards like HTTP.

problem proximity: Graph Traversal Languages follow the native structure of the Web (namely re-
sources with links in between), which makes the usage intuitive and simple.

Both but mainly the problem proximity qualifies these languages for bridging the gap between complex
Semantic Web data representation and the comprehension of pure Web developers. In the following
sections we present LDPath as a representative of Graph Traversal Languages that we used, adapted and
formalized within the MICO project.

5.2.1 Theoretical Foundations

In this Section we describe the formal semantics of LDPath, which are fundamental for a proper def-
inition of the query language but may be skipped by readers who just want to get an overview on the
basic concepts, which also are described by example in Section 5.2.2. As basis we use a simple triple
based model for representing the data that is distributed over the Web of Linked Data. In particular, we
assume that the web consists of interlinked documents containing RDF triples. The formal definition of
the Web of Linked Data is based on [HF12].

Definition 1
For the scope of this document, we let

• I be the set of all possible identifiers (e.g. URIs, IRIs),

• L be the set of all possible constant literals (e.g. strings, natural numbers, etc..),

• R = I ∪L , and

• t be a data triple t ∈ (I ×I × (I ∪L))

We model the Web of Linked Data as a structure of interlinked documents. These documents are ac-
cessed via their identifiers d ∈D and contain the data that is represented as a set of data triples.

Definition 2
The Web of Linked Data W is a tuple (D ,data,adoc) where:

• D is the set of symbols that represent LD documents, D ⊆I

• data : D → 2I×I×(I∪L) is a total mapping such that data(d) is finite for all d ∈D

26http://neo4j.com/docs/stable/cypher-introduction.html

75

http://neo4j.com/docs/stable/cypher-introduction.html

• adoc : I →D is a partial, surjective mapping.

Put in simple words data is the function to retrieve the data (i.e. the RDF description) of a document d
from the Web, while adoc is used to resolve the associated document d for a given identifier i ∈I .

LDPath works on two primary constructs, selectors and filters. Selectors are used to navigate the
Web of Linked Data, while filters reduce the result set based on specific conditions.

Definition 3
For the following definitions of selectors and filters (see Section 5.2.1), we let

• S be the set of all Selectors, and

• F be the set of all Filters.

Selectors

In this section, the set of available selectors is defined. The reference implementation in Apache Mar-
motta supports additional selectors, however these put additional constraints on the data and work in a
"best effort" base. Some examples are listed in Section 5.2.3.

Definition 4
The PropertySelector is the basic "navigation" from one resource r to a direct neighbour, linked with
the given property p. It is defined as a function sProp : 2I∪L ×I → 2I∪L :

sProp(R, p) = {o | r ∈ R∩I ;〈r, p,o〉 ∈ data(adoc(r))}

Definition 5
The WildcardSelector is a relaxed PropertySelector, following all available links from the given start
resource r. It is defined as a function sWC : 2I∪L → 2I∪L :

sWC(R) = {o | r ∈ R∩I ;∃p ∈I ⇒ 〈r, p,o〉 ∈ data(adoc(r))}

Definition 6
By concatenating two Selectors, it is possible to traverse a complex path through the web of Linked
Data. This is called PathSelector and defined as a function sPath : 2I∪L ×S ×S → 2I∪L :

sPath(R,s1,s2) = R◦ s1 ◦ s2 = s2(s1(R, .), .)

Definition 7
The UnionSelector merges the results of two other selectors. It is defined as a function s∪ : 2I∪L ×
S ×S → 2I∪L :

s∪(R,s1,s2) = s1(R, .)∪ s2(R, .)

Definition 8
The IntersectSelector reduces the results of two other selectors to their intersection. It is defined as a
function s∩ : 2I∪L ×S ×S → 2I∪L :

s∩(R,s1,s2) = s1(R, .)∩ s2(R, .)

76

Definition 9
The RecursiveSelector applies a selector multiple times. It is defined as a function sRec : 2I∪L ×S ×
IIN0× IIN0→ 2I∪L :

sRec(R,s, l,u) =


R if l = 0,u = 0
R∪R′ if l = 0,u > 0
R′ if l > 0,u > l
/0 otherwise

where R′ = sRec(s(R, .),s,max(l−1,0),max(u−1,0)).

There are two special versions of this selector:

• the StarSelector is defined as s∗(R,s) = sRec(R,s,0,∞),

• the PlusSelector is defined as s+(R,s) = sRec(R,s,1,∞)

These two can cause problems with termination if W is infinite. Also a circle detection must be added
when implementing those selectors, otherwise the evaluation might not terminate even for finite W . The
implementation in Apache Marmotta (see Section 5.2.4) is able to detect circles and stops the execution
accordingly.

Definition 10
The TestSelector applies a filter (see 5.2.1) to the result set of a selector. It is defined as a function
sTest : 2I∪L ×S ×F → 2I∪L :

sTest(R,s, f) = f (s(R, .), .)

Filters

Using filters it is possible to filter the result set R⊆ (I ∪L) of a selector function to a subset that fulfills
certain conditions. In this section we will describe and define the most common filters. However,
the implementation in Apache Marmotta (see Section 5.2.4) supports additional filters that add extra
restrictions on the data. Examples of such filters will be shown in Section 5.2.3.

Definition 11
A LiteralTypeFilter allows to select only literals of a certain literal type. It is defined as a function
f LitType : 2I∪L ×I → 2I∪L :

f LitType(R, t) = {l | l = 〈lv, lt〉 ∈ R∩L ; lt = t}

To simplify the definition of LDPath, we assume that language tags of literals can be expressed through
special literal types. For the scope of this document, we say that e.g. the language tag ’en’ can be
expressed as @en⇔ ˆˆrdf:langString$en.

Definition 12
A PredicateFilter checks the simple presence of a predicate/path starting from a resource. It is defined
as a function f Has : 2I∪L ×S → 2I∪L :

f Has(R,s) = {r | r ∈ R;s({r}, .) 6= /0}

In other words, it checks that the given selector evaluates to something other than /0 when applied to the
resource to check.

77

Definition 13
A PropertyFilter checks the the given selector evaluates to a specific value. It is defined as a function
f Is : 2I∪L ×S ×I ∪L → 2I∪L :

f Is(R,s,v) = {r | r ∈ R;v ∈ s({r}, .)}

Definition 14
An IntersectionFilter allows the combination of two other filters, taking the intersection of both their
result sets. It is defined as a function f And : 2I∪L ×F ×F → 2I∪L :

f And(R, f1, f2) = f1(R, .)∩ f2(R, .)

Definition 15
An UnionFilter allows the combination of two other filters, taking the union of both their result sets. It
is defined as a function f Or : 2I∪L ×F ×F → 2I∪L :

f Or(R, f1, f2) = f1(R, .)∪ f2(R, .)

5.2.2 Syntax Definition

In the following part, we will describe the syntax used to define LDPath rules and programs. An LDPath
Program is a set of rules, optionally with a label.

Please note that the syntax defined here is a simplified version since the actual implementation also
supports constructs that are formally incomplete or not decidable. Also, some simplifications have been
applied to make the syntax grammar more readable. The full syntax specification can be found in the
repository of the implementation27.

〈program〉 ::= 〈prefix〉* 〈rule〉+

〈prefix〉 ::= ‘@prefix’ 〈lname〉 ‘:’ 〈iri〉 ‘;’

〈rule〉 ::= (〈lname〉 ‘=’)? 〈selector〉 ‘;’

〈selector〉 ::= 〈atomicSelector〉
| 〈compoundSelector〉
| 〈testingSelector〉

〈atomicSelector〉 ::= 〈property〉 // PropertySelector
| ‘*’ // WildcardSelector
| ‘(’ 〈selector〉 ‘)’

〈compoundSelector〉 ::= 〈pathSelector〉
| 〈Selector〉 ‘&’ 〈Selector〉 // IntersectSelector
| 〈Selector〉 ‘|’ 〈Selector〉 // UnionSelector
| ‘(’ 〈selector〉 ‘)’ 〈bounds〉 // RecursiveSelector

〈pathSelector〉 ::= 〈atomicSelector〉 (‘/’ 〈pathSelector〉)? // PathSelector

27http://s.apache.org/rR

78

http://s.apache.org/rR

〈testingSelector〉 ::= 〈atomicSelector〉 ‘[’ 〈test〉 ‘]’ // TestSelector

〈test〉 ::= 〈atomicTest〉
| 〈test〉 ‘&’ 〈test〉 // IntersectionFilter
| 〈test〉 ‘|’ 〈test〉 // UnionFilter

〈atomicTest〉 ::= ‘^^’ 〈property〉 // LiteralTypeFilter
| ‘@’ 〈languageTag〉 // LiteralTypeFilter (language)
| 〈selector〉 // PredicateFilter
| 〈selector〉 ‘is’ 〈value〉 // PropertyFilter
| ‘(’ 〈test〉 ‘)’

〈property〉 ::= 〈lname〉 ‘:’ 〈lname〉 | ‘<’ 〈iri〉 ‘>’

〈value〉 ::= 〈property〉 | ‘"’ 〈string〉 ‘"’

〈iri〉 ::= IRI as in RFC3987 [DS05]

〈languageTag〉 ::= Tag as in RFC5646 [PD09] | ‘none’

〈lname〉 ::= [A-Za-z0-9_]+

〈bounds〉 ::= ‘{’ 〈number〉 ‘,’ 〈number〉 ‘}’ | ‘*’ | ‘+’

The grammar covers the set of formal definitions described in section 5.2.1. To give a better understand-
ing of LDPath we give some example queries that are executed on a small test set of RDF resources
outlined in Listing 14. We refrain from using MICO specific vocabularies (e.g. the Annotation Model)
in order to keep the example data simple and best fitting for the main goal, which is the presentation of
language features. The set contains resources from several data sources including complex databases
(e.g. dbpedia) and simple files (e.g. a FOAF file). As start resource we take the FOAF profile of a fictive
person John Doe (ex:john). For the matter of compactness we do not instance one example per each
definition but combine several constructs within the queries. For the same reason we skip the prefix
section.

Listing 14: Sample Data in Turtle syntax.

@prefix ex: <http://example.com/data/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <http://schema.org/> .
@prefix db: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix skos: <http://www.w3.org/2004/02/ skos/core#> .

ex:doe foaf:firstname "John" ;
foaf:surname "Doe" ;
foaf:birthday "12-31" ;
ex:married_to ex:mary ;
foaf:knows <http://www.wikier.org/foaf#wikier > ;
dbo:birthPlace db:London .

79

ex:mary a schema:Person ;
schema:name "Mary Doe" ;
ex:has_job ex:elementary_teaching .

ex:elementary_teaching a skos:Concept ;
skos:broader ex:teaching .
ex:teaching a skos:Concept ;
skos:broader ex:education .
ex:education a skos:Concept ;
skos:topConceptOf ex:job_sectors .

As mentioned, LDPath query evaluation starts on one or more specific resources. The following exam-
ples always start with one specific resource, namely ex:doe, which represents John.

Example 1: What’s your surname and when are you born, John?

This is basic path query that uses the PropertySelector from Def. 4. The result is a map.

surname = foaf:surname;
birthday = foaf:birthday;

Result: {surname:["Doe"], birthday:["12-31"]}

Example 2: Who are your contacts, John?

This more complex query shows how LDPath supports the combination of various ontologies. It uses
the UnionSelector (Def. 7) and the UnionFilter (Def. 15). In addition we do not care on the relation and
use a WildcardSelector (Def. 5).

friends = *[foaf:Person|schema:Person]
/ (foaf:name|schema:name);

Result: {friends:["Mary Doe","Sergio Fern%*\’a*)ndez"]}

It has to be mentioned that the IntersectSelector (Def. 8) and the IntersectionFilter (Def. 14) works
analogous to the intersections so we do not outline them in separate examples.

Example 3: How is your home country called in Germany, John?

This example shows how LDPath allows to transparently query various datasets. To choose the language
of the result literal we use the LiteralTypeFilter (Def. 11).

geburtsland = dbo:birthPlace
/ dbo:country
/ rdfs:label[@de];

Result: {geburtsland:["Vereinigtes Königreich"]}

80

Example 4: In which sector does your wife work, John?

For this query we want to query for the top concept of Mary Doe’s employment. Therefore we use the
RecursiveSelector (Def. 9) and the PredicateFilter (Def. 12). The query uses the SKOS hierarchy and
collects all broader related concepts if they match the filter (so only a TopConcept is added).

sector = (
ex:maried_to / (skos:broader)*
)[skos:topConceptOf];

Result: {sector:[ex:education]}

5.2.3 Extensions

While the LDPath constructs described in Section 5.2.1 are theoretical sound and complete, many use-
cases require more expressive language constructs even if it cannot be guaranteed that they always
evaluate correctly with respect to the open-world assumption. However, some of those constructs are
described in this section.

Selector- and Filter-Extensions

Definition 16
The ReversePropertySelector is the inverse version of the PropertySelector. It tries to follow incoming
links. It would be defined as a function sRevProp : 2I∪L ×I → 2I∪L :

sRevProp(R, p) = {s | 〈s, p,r〉 ∈ data(adoc(s));s ∈I ;r ∈ R}

Since the Web generally only contains forward links, this selector would require the complete data cor-
pus rendering the distributed architecture of the web void. However, for some special use-cases the
above restrictions do not apply additional constraints (e.g. in a closed world scenario) the ReverseProp-
ertySelector can be useful.

Definition 17
A NotFilter would negate the regarding filter. It would be defined as a function f Not : 2I∪L ×F →
2I∪L :

f Not(R, f) = R\ f (R, .)

Transformers

Originally introduced for the use-case of “Semantic Search” (see Section 5.2.5), transformers proved to
be useful in other scenarios too.

After evaluating an LDPath statement, the result is passed to the transformer and applies a final
operation to the resources in the result set. A transformer is defined as a function t : 2I∪L → 2X ,
where X solely depends on the implementation of the transformer. As an example, the transformer
xsd:double in listing 15 is defined as txsd:double : 2I∪L → 2IR.

The reference implementation in Apache Marmotta (see Section 5.2.4) ships with a set of transform-
ers for the most common XSD-Datatypes that try to compensate for incomplete data. E.g, literals that
come without an explicit type set will be cast to the result type, if that fails the value is removed from
the result set.

81

Listing 15: LDPath example with transformer

name = foaf:surname :: xsd:string;
birthday = foaf:birthday :: xsd:date;
weight = bio:weight :: xsd:double;

So even if the original data comes without type definition, the result of the LDPath statement will be
typed.

Functions

Also functions were originally introduced for the “Semantic Search” scenario (see Section 5.2.5).
Internally, a function is handled like a selector but allows more complex operations and can be

dynamically parameterized. A function in LDPath is defined as f : 2I∪L ×A→ 2I∪L where a ∈ A is
a list of selectors as arguments for the function f: a =< a1, . . . ,an >,ai ∈S .

The argument selectors are evaluated within the context of the function, their results passed as input
to the function. A simple example illustrates this for the function fn:concat(.):

Listing 16: fn:concat example

full_name = fn:concat(foaf:givenname , " ", foaf:surname);

Result: {name = ["John Doe"]}

5.2.4 Implementations

LDPath is currently implemented for Java by Apache Marmotta28 and relies on a number of backends,
such as Apache Jena models, OpenRDF Sesame repositories or simple files on disk. As described above,
the language can be extended with new functions, which can be easily added by implementing a Java
interface (and using ServiceLoader29 for its registration).

LDPath is also exposed in Marmotta as a simple JSON based RESTful protocol30, which is being
implemented by Redlink on its cloud platform31. On the client side currently there is support for LDPath
Java, PHP, Python and Javacript.

5.2.5 Uses Cases

LDPath simplifies the access to Linked Data resources. Therefore, behind the main aim of querying the
Linked Data Cloud, LDPath enables a broader range of use cases. In the MICO project, the language is
mainly used and well supported by Anno4J, like described in Section 4. But there are more scenarios
where LDPath plays a central role, which are worth to be mentioned here.

Listing 17: LDPath templating example.

<@namespace foaf="http://xmlns.com/foaf/0.1/" />
<@namespace schema="http://schema.org/" />
<html >

<head >

28http://marmotta.apache.org/ldpath
29https://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
30http://marmotta.apache.org/platform/ldpath-module#protocol
31http://dev.redlink.io/api/1.0-BETA/#ldpath-get

82

http://marmotta.apache.org/ldpath
https://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
http://marmotta.apache.org/platform/ldpath-module#protocol
http://dev.redlink.io/api/1.0-BETA/#ldpath-get

<title >
Friends of
<@ldpath path="(foaf:name|schema:name)::xsd:string"/>

</title >
</head >
<body >

<h1>
Friends of
<@ldpath path="(foaf:name|schema:name)::xsd:string"/>

</h1>

<@ldpath path="*[foaf:Person|schema:Person]">

<@ldpath path="(foaf:name|schema:name)::xsd:string"/>

</@ldpath >

</body >
</html >

Templating: The first is LDPath as templating language32. LDPath implements an extension of the
FreeMarker template engine that allows constructing templates with LDPath statements for inserting and
iterating over resources’ values. Listing 17 shows a basic example how can it be used inside FreeMarker.

Semantic Search: Since LDPath provides a very convenient way to flat Linked Data complex paths,
it is a straight-forward way to interface with NoSQL stores such as Apache Solr or ElasticSearch. The
Linked Media Framework [KSB11] uses LDPath to configure the access to the RDF data for providing
Semantic Search33. The resources are automatically indexed in Apache Solr offering different perspec-
tives on the data managed in a very performant way, like faceting, pivoting, etc. Using the same example
data as for former sections, Listing 18 outlines a LDPath program for indexing friends of person in a
flat document structure using de-normalization.

Listing 18: Semantic Search configuration example.

name = *[foaf:Person|schema:Person]
/(foaf:name|schema:name) :: xsd:string;

LDPath is also used in Apache Stanbol to flat resources for internal storage and special retrieval facili-
ties34.

LIDO: LIDO35 (Linked Data Object Mapper for Java) allows easy access to Linked Data resources
by annotating POJOs in a similar way to JPA. It is an experimental Open Source Project and follows a
similar approach like Anno4J but without the focus on a specific kind of use case.

32http://marmotta.apache.org/ldpath/template
33https://bitbucket.org/srfgkmt/lmf/wiki/Module-Semantic-Search
34https://stanbol.apache.org/docs/trunk/components/contenthub/contenthub5min
35https://github.com/tkurz/lido

83

http://marmotta.apache.org/ldpath/template
https://bitbucket.org/srfgkmt/lmf/wiki/Module-Semantic-Search
https://stanbol.apache.org/docs/trunk/components/contenthub/contenthub5min
https://github.com/tkurz/lido

Listing 19: LIDO mapper example.

@Type("http://schema.org/Person")
public class Employee {

@Path("<http://schema.org/name >")
public String name;

@Path("<http://schema.org/description >")
public LangString langString;

@Path("<http://schema.org/weight >")
public double weight;

}

These POJOs are stubbed and filled with data from remote resources using a LDPathMapper. This
programming approach decouples the complexity of RDF graph structure and the object-oriented world
of Java and allows a seamless integration of Linked Data resources in existing applications.

Listing 20: LIDO - retrieving data.

// create mapper for employees
LDPathMapper <Employee > employees =

new LDPathMapper <>(dataClient ,
Employee.class);

// get one employee
URI e1 = new URI("http://example.org/e1");
Employee employee = employees.findOne(e1);

5.2.6 Future Work

In this section we presented the formal semantics of LDPath, a representative of Graph Traversal Lan-
guages. Furthermore we gave use case examples for the main LDPath concepts. LDPath as language is
out there since quite a while now (first versions are date at the end of 201136), but in its recommendation
step it focused more on industrial use cases than in the research community. This lead to a broad user
community of developers in the Apache Software Foundation, where projects such as Apache Marmotta
and Apache Stanbol do use LDPath for accessing RDF datasets with different purposes. This facts led
to the decision that LDPath is a suitable, stable, expressive and easy to use solution for Anno4J.

36https://lists.w3.org/Archives/Public/public-lod/2011Dec/0011.html

84

https://lists.w3.org/Archives/Public/public-lod/2011Dec/0011.html

5.3 Semantic Media Similarity

In the former section we presented SPARQL-MM as an extension of the query language SPARQL to
multimedia facilities. In order to define a feature set for the extension we analyzed over 70 query
languages of the last three decades, which leads us to the feature set outlined in Table 14. In order to
keep the report compact we skipped the generic query language features here (like Transitive Closure,
Relational Completeness, etc) and focused on multimedia specific functionalities. In a survey we are
currently working on we will do a exhaustive analysis including generic as well as specific requirements.
As the reader can see, many of the features are already covered by SPARQL and/or existing extensions

Table 14 Requirements for Multimedia Query Languages

Title Description Satisfaction
Universal Is suitable for multi-modal multimedia

data
RDF, MA, Media Fragment
URIs

Uncertainty Supports the concept of partial truth fSparql, SPARQL
arithmetics

Spatial Operations Provides Spatial Functions SPARQL-MM
Temporal Operations Provides Temporal Operations SPARQL-MM
Evolution Supports asset time series 5

Metadata Awareness Support structural and content-description
based metadata operations

SPARQL-MM, SPARQL,
Fulltext Index

Media Similarity Provide similarity metrics and functions 5

Weighting Allow usage of relevance values for
sorting and boosting

SPARQL, SPARQL
arithmetic

(including SPARQL-MM). But there are still two major points missing which are evolution and media
similarity. Whereby evolution is a very rarely used feature, media similarity is crucial for many use
cases. Therefor we decided to focus this in our further work. In this section we give an brief overview
on Semantic Similarity and sketch an approach of the integration of fragment relations to these. An
extension of SPARQL-MM to Media Similarity is currently in progress but not yet finalized and this
will be presented in the near future.

5.3.1 Semantic Media Similarity

The basic idea of our approach is the integration of Multimedia Fragments with well-known concept
similarity measurements. Semantic concept similarity is a metric over a set of terms, whereby the idea
of distance between them is based on the likeness of their meaning, like described in [Har+15]. There
mainly exist two technological branches which are topological and statistical similarity. Topological
Similarity is based on interlinked concept graphs and underlying ontologies. This technology is a good
fit for RDF based systems as data and metadata is already provided as named graph. But in the later
past (due to the dawn of the third iteration of neuronal networks and related machine learning) Satistical
Similarity becomes more prominent. It is based on a text corpus and uses a vector space model for
word correlation calculations. In order to be free in the choice of the concept similarity our approach is
metric independent as long as the metric produces a normalized output, namely values between 0 and 1,
whereby 0 means no similarity and 1 states that two concepts are the same. Furthermore we proceed on
the assumption of a linear distribution.

85

The overall algorithm is outlined in Listing 21. Note, that the algorithm performs a similarity query
based on an image j and an image set I based on spatial fragments. In the preparation we identify the
most important fragment f ∗ for every image i (lines 2-7) and calculate the relative positions of fragments
of i regarding f ∗ (lines 9-11). This is the actual comparison part is located at lines 15 - 23. The Semantic
Media Similarity value of two images i, j is the sum of the Semantic Similarity of their most significant
fragments and the maximum Semantic Similarity for each fi to every f j. This sum is weighted, which
means the contribution of a similarity value depends on the fragment significance and the fragment
similarity fragSim (which is defined by spatial deviation).

Listing 21: Semantic Fragment Similarity.

1 prepare(I) {
2 foreach image i in I {
3 foreach fragment f_i of i {
4 calculate_fragment_significance(f_i)
5 }
6
7 f* = most_significant_fragment(i)
8
9 foreach fragment f_i of i {

10 calculate_relative_fragment_positions(f_i ,f*)
11 }
12 }
13 }
14
15 query(j,I) {
16 foreach image i in I {
17 i.s = semSim(i.f.first , j.f.first)
18 foreach f_j in j.f.rest {
19 f_i = fragment_with_most_semantic_similarity(i.f.rest)
20 i.s += semSim(f_j, f_i) * significance(f_j) * fragSim(f_j ,f_i)
21 }
22 }
23 order_by_similarity(I)
24 }

A clear formal definition of fragment significance and spatial deviation is the basis for a proper and effi-
cient implementation. In the following we outline these definitions starting with Normalized Fragment
Significance.

Normalized Fragment Significance
Normalized Fragment Significance denotes the prominence based on relative position (which we call

normalized center distance) and the relative areas of the fragments (normalized area). The assumption
is, that a fragment is more significant if it is bigger and position nearby the center.

Definition 18
The normalized center distance NCD for a fragment fi regarding an image i is defined as

(1) NCD(i, fi) =
|~c(i)−~c f(i) |√

width(i)2 +height(i)2)

86

whereby c are center vectors.

Definition 19
The normalized area NA for a fragment fi regarding an image i is defined as

(2) NA(i, f(i)) =
width(f(i))∗height(f(i))

width(i)∗height(i)

Definition 20
Normalized Fragment Significance NFS describes the significance of an image fragment fi within an
image i and is defined as

(3) NFS(i, f(i)) = NA(i, f(i))∗ (1−NCD(i, f(i)))

Semantic Fragment Similarity
Within the algorithm we use the most significant fragment which we define formally as:

Definition 21
Let F(i) be the set of all fragments of an image i. The most significant fragment f ∗(i)∈ F(i) is a fragment
that fulfills the following condition:

(4) NFS(i, f ∗(i))>= fn(i) for fn(i) ∈ F(i),n ∈ N

This allows the identification of the most significant fragment. It can be used to identify a fragment
fixpoint f p for the calculation of similarity of fragments regarding relative positioning.

Definition 22
A fragment fixpoint ~φ(i) for an image i is defined as the center of the most significant fragment f ∗(i).

Definition 23
Let f(i) a fragment of image i. The relative center vector ~ψ f(i) is defined as the displacement of the center
vector~c f(i) of the fragment and the fragment fixpoint of i:

(5) ~ψ f(i) =
~φ(i)−~c f(i)

With this the cosine similarity can be used to calculate the normalized spatial fragment similarity.

Definition 24
With the taken definitions the Normalized Spatial Fragment Similarity (NSFS) of the fragments f(i), f(j)
of two images i, j regarding their fixpoints can be calculated as follows:

(6) NSFS(f(i), f(j)) =
~ψ f(i) ∗~ψ f(j)

‖~ψ f(i)‖∗‖~ψ f(j)‖

5.3.2 Further Work

In this section we gave a short introduction into a novel Semantic Media Similarity approach. As the
reader can see, the approach is still a early work in progress and lacks an evaluation. Therefor a round
of A-B Testing will presently be made with a group of 30 users. There we will test the approach in
a controlled environment using a subset of the MS Coco (Common Objects in Context)37 dataset of
annotated images. Additionally we will extend the approach to temporal fragments.

37http://mscoco.org/

87

http://mscoco.org/

6 Enabling Technology Modules for Cross-media Recommendations

WP5 is about providing a framework that uses both collaborative filtering and content-based approaches
for recommendations within the platform. The relevant use cases can be separated into two domains:

1. Recommendation use cases which require collaborative filtering only, e.g., evaluating user likes
or site accesses.

2. Cross-media recommendation use cases, for which the problem may be defined as follows: The
task of finding a suitable selection of media items, where there are at least two different types of
input media sharing the same context.

As for the latter, following the ideas outlined in [Kö+16], we identified two relevant use cases in the
project which utilize information created by the extractors of WP2, using the MICO infrastructure to
provide cross-media recommendation:

a) The IO10 Editor Support Use Case, which uses MICO to match text analysis on videos with text
analysis of journal articles, to support an editor in finding related archive content.

b) The Zooniverse Chat Analysis, which combines sentiment and content analysis within chats with
animal detection. The goal is to identify debated content, for which regular Zooniverse users are
unable to reach a consensus.

The main goal of this chapter is to describe these applications and their respective implementation, and
it is structured as follows:

• Section 6.1 provides an overview over the recommendation approaches implemented within the
MICO project.

• Section 6.2 discusses the location of the recommendation components within the overall MICO
architecture, and provides an overview of the API functions that can be used by the showcases.

• Section 6.3 describes the components status, including brief usage instructions.

• Finally, Section 6.4 discusses the WP5 results by comparing them to the technology enablers
defined in the initial version of this report (V3).

6.1 Recommendation Approaches

Recommendation in MICO focuses on two main data sources: media analysis results provided by the
developed extractors (see Section 2) and user data provided by our showcase partners. Naturally, this
leads to a distinction between collaborative filtering (CF) and content based recommender systems, the
applications of which will be discussed in this section.

6.1.1 Collaborative Filtering

While not being a cross-media recommendation approach, using user behaviour to find similar items is
a fundamental requirement to every recommendation approach. The following use cases required a pure
CF-based approach:

88

Greenpeace Site Statistics

The Greenpeace magazine provides site usage data in csv format, containing the visited page and
a user id, i.e. tuples like /il-pesce-azzurro-nel-canale-di-sicilia/,view,21358. While
more detailed information (e.g., the amount of time a user spends reading a page) would have been
beneficial, there are some overlaps between users which can be used to derive recommendations.

InsideOut10 provides a recommendation widget that can be used to present the recommendations
in Wordlift on their GitHub page38 mark (see Figure 22 for an example). The recommendation
widget has the goal to drive traffic to other articles that are relevant for the user and related to the
article itself. To overall goal is to keep readers on the website, increasing user engagement, and
ultimately boosting the number of subscribers.

Zooniverse Image Likes

The Zooniverse project circles around subjects e.g., pictures of animals, that will be annotated
and discussed by their users. A direct user-subject recommendation, where subjects will be rec-
ommended to users that are likely to have a certain annotation performance and will be motivated
by this item is difficult. Finding psychological factors that increase a users time on the website is
still ongoing research at Zooniverse [Bow+15]. Dispatching unannotated subjects does not meet
the requirements of our showcase partner.

However, besides annotating subjects, users have the opportunity to flag subjects as favorites,
for the Snapshot Serengeti, e.g., pictures of sunsets, an exceptional amount of animals or special
events, like a predator hunting down another animal (see Figure 23 for examples). In such cases,
we can assume that some users have a different taste of pictures and can recommend favorite
images.

For implementing CF-based recommendations within the MICO project, Prediction.io was selected
within the intial phase of the project. To handle the complex installation, a Prediction.io module was
developed within a docker container which can be installed automatically, if CF-functionalities are re-
quired within the specific MICO instance. The engine template used within MICO is the universal
recommender39 - for installation instructions, see Section 6.3.
For both aforementioned CF use cases, MICO provides a recommendation endpoint returning a list of
items for a given item. Prediction.io will be trained with an initial dataset on install, further user data
(events) can be added later at any time. For the API endpoints, see the /reco endpoint in Table 15.

6.1.2 Content Based recommendation

Content-based recommendation include all recommender functionalities that exploit item metadata. For
MICO, this is the most relevant source for cross-media recommendations, and it exploits metadata
annotated by extractors from WP2.

Editor Support Use Case
The setting for the editor support case is as follows: A journal editor (e.g., for the Italian Green-
peace Magazine) is creating a new article. To create a rich user experience, she is advised to link

38https://github.com/wanbinkimoon/wordlift-playground
39https://github.com/pferrel/template-scala-parallel-universal-recommendation

89

related content from the journal’s video archive, whose meta data is of poor quality. Instead of
having to looking through the content all by herself, she can use MICO that analyses the archive
and matches the content information extracted there with the content of the article currently writ-
ten.

Getting information for the article uses the NER (named entity recognition) components of MICO.

The workflow for videos is more complex: The audio part of all videos is extracted and MICO’s
speech to text component is used to generate input for the NER.

It is assumed that the archive content is analysed a priori on a MICO instance. The analysis of
the articles will be much faster, and can be repeated for different states of the writing process.
The methods of the ner/ and video/ endpoint will be used to get matching MICO-items, i.e.,
videos from the archive. Additionally, this process can be complemented with results from the
collaborative filtering.

Zooniverse Chat Analysis
As discussed in the introduction, recommending subjects to users is subtle. Even the initial idea
of avoiding the annotation of (pre-classified) empty image does not seem to increase the user
engagement. Therefore we decided against recommending certain subjects to certain users to
improve classification.

Instead, the focus was switched to the administrative staff of a citizen science project. On Zooni-
verse, administrators have the possibility to forward selected images to experts (e.g., biologists),
if they think that regular users are not able to give a precise annotation.

Of course, doing this large-scale contradicts the idea of a citizen science project (that is: relieve
researchers from annotation tasks). So this forwarding is considered costly and should be avoided.
Given the large amount of data, this can only done for a very selected set of items, and there
should be criteria that help the administrative stuff in finding items where such forwarding is
indeed beneficial.

MICO’s animal detection and text analysis components allow to assess the debatedness of sub-
jects, analysing both the image as well as the discussion for this image. This assessment can be
used to automatically flag certain subjects for moderator attention.

The features that are currently used for calculating a debated score are:

• Sentiment analysis results

Figure 22 Wordlift recommendation widget for Greenpeace data

90

• Comparison of found animals between image and text
• Discussion length

Whether or not a certain subject is debated according to that definition can be queried using the
reco/zoo/{subject_id}/is_debated endpoint (see Table 15).

6.2 Platform Integration

The location of recommendation components within the MICO platform is depicted in Figure 24. As
for implementation, all API functions are part of the plaform’s showcase-webapp. To save resources,
the installation of Prediction.io is optional. See Section 6.3 for respective installing instructions. Fol-
lowing the MICO Technical Report Volume 4, the functional description of the main components is the
following (numbers refer to Figure 24):

1 Recommendation engine including custom recommendation modules
Basic services which are potentially reusable for various recommendation use cases are imple-
mented here. This includes, e.g., the code for the entity matching for the editor support use case.

2 Recommendation API
Code that is specific to a single user story / need will be put in separate modules that connect to
the recommendation modules. While media analysis data is available via Anno4j, the recommen-
dation API also offers capabilities to collect user data from the showcases, and forwards it e.g. to
the Prediction.io event server for re-training the recommendation model.

The MICO platform exposes utility functions for recommendations as an API implemented within
the showcase-webapp as REST web services. The API description is available as a JSONdoc
file at http://mico-project.bitbucket.org/api/rest/?url=reco.json. For sake of com-
pleteness, the available endpoints are listed in Table 15.

3 Prediction.IO
As described in the previous reports, Prediction.io is responsible for machine-learning based col-
laborative filtering tasks. While Prediction.io offers a rich feature set, it comes with many depen-
dencies. To simplify using it inside the platform, docker was used. For WP5, a custom dockerfile
was written that allows to easily deploy Prediction.io with a single command and encapsulate its
dependencies (see Section 6.3.1).

4 Marmotta & Anno4j
Data is stored inside the platform using Marmotta. WP5 will query this data using the Mar-
motta SPARQL endpoint, using the querying capabilities of Anno4j when applicable. Anno4j is

Figure 23 Examples of favourite images (subjects ASG001p8rj, ASG001s4b8, and ASG001s5my)

91

http://mico-project.bitbucket.org/api/rest/?url=reco.json

Table 15 API Overview.
Please see http://mico-project.bitbucket.org/api/rest/?url=reco.json for a detailed API
documentation and all parameters. On a default configured MICO platform, the endpoints are available
as a sub resource of http://mico-platform:8080/showcase-webapp.

Method URL Description

GET /ner/{source}/transcript Get speech-to-text results for given source

GET /ner/{source}/entities Get linked entities for given source

GET /reco/pioevents Outputs all events stored by the current pre-
diction.io instance

GET /reco/piostatus Determines whether prediction.io is run-
ning on the system

GET /reco/dockerstatus Determines whether docker is running on
the system

GET /reco/piosimplereco Returns recommendation for a given item
using Prediction.io

POST /reco/createentity Adds new event to prediction.io

GET /reco/zoo/{subject_id}/discussion/
relatedsubjects

Returns related subjects for a given subject
id

GET /reco/zoo/{subject_id}/is_debated Returns whether a given subject is debated
by its users

GET /videos/default Get a list of default filenames

GET /videos/entities/{entity} Gets annotations for a given video

GET /videos/related/{source} Gets semantically related item for a given
sourcename

GET /videos/analyzed Get a list of annotated videos

92

http://mico-project.bitbucket.org/api/rest/?url=reco.json

Figure 24 Overview of the MICO recommendation architecture.

discussed inside this report in chapter 4. Along with the development of the work package 5 com-
ponents, the MicoQueryHelper functions were created, allowing an easy, reusable way to filter
for certain content types. As an example, querying all analyzed (mp4-)video items is as simple
as:

List <ItemMMM > analyzedItems =
micoQueryHelper.getItemsByFormat("video/mp4")

Note that despite the query is run against a Marmotta SPARQL endpoint, the preparation of the
query is transparent to the user and the returned ItemMMM classes provide all methods the data
model describes.

Regarding implementation, the code is split on two repositories: a dedicated repository for the recom-
mendation engine, and the code for the Recommendation API, which is part of the showcase-webapp
within the platform. An overview of the repository structure is provided in Figure 25.

93

Figure 25 Recommendation repository structure
Platform https://bitbucket.org/mico-project/platform

[...]
showcase-webapp

src/main/java/eu/mico/platform
reco ...Recommendation API Code

[...]

Recommendation https://bitbucket.org/mico-project/recommendation
Demo..Collection of WP5 working examples
PredictionIO....Code related to deployment and configuration of prediction.io inside docker
RecoApi...Legacy API Code
EditorSupport..................................Implementation of editor support use case

94

https://bitbucket.org/mico-project/platform
https://bitbucket.org/mico-project/recommendation

6.3 Recommendation Engine & Demo Code

6.3.1 Installing the recommendation API

The API is developed as a tomcat webapp inside the platform repository: bitbucket.org/
mico-project/platform/src/HEAD/showcase-webapp/.

The deployment can be done automatically using maven, providing the respective MICO instance
in the pom.xml. More details regarding the configuration can be found here: https://bitbucket.
org/snippets/mico-project/Adxrz. Having built a *.war file, a manual upload to the tomcat
manager webapp is possible as well: The showcase-webapp.war must be placed within the directory
/var/lib/tomcat7/webapps/. The tomcat server detects and deploys the file automatically (startup
usually takes two minutes).

6.3.2 Installing Prediction.io

To simplify using it inside the platform, docker40is used. For WP5, a custom dockerfile was written that
allows to easily deploy Prediction.io with a single command and encapsulate its dependencies. After
installing docker on the MICO platform (see next section), there are three ways to get a running docker
container:

1. Start from a base ubuntu image and install Prediction.io there. See section “Prepare Prediction.io
base image” for details.

2. Use the dockerfiles uploaded in the MICO Bitbucket repository. See section “Running Predic-
tion.io using a prepared MICO Dockerfile” for details.

3. Use a prepared image from Dockerhub. See https://hub.docker.com/r/thomasidmt/wp5/
for details.

Install Docker on platform
Open a shell inside the MICO platform and install Docker via apt and make it runnable as a non-root
user:

$ sudo apt-get update
$ sudo apt-get install curl
$ curl -sSL https://get.docker.com/ | sh
$ sudo usermod -aG docker user

Logout, Login again

Prepare Prediction.io base image
Prediction.io will be installed on an ubuntu base image (at time of writing: Ubuntu 16.04.1 LTS - xenial).
In mico-image:

$ docker run -t -i ubuntu

In container shell:
40https://www.docker.com/what-docker

95

bitbucket.org/mico-project/platform/src/HEAD/showcase-webapp/
bitbucket.org/mico-project/platform/src/HEAD/showcase-webapp/
https://bitbucket.org/snippets/mico-project/Adxrz
https://bitbucket.org/snippets/mico-project/Adxrz
https://hub.docker.com/r/thomasidmt/wp5/
https://www.docker.com/what-docker

$ apt-get update
$ apt-get install curl default -jdk python -pip
$ pip install pymongo
$ pip install predictionio

$ curl
https://raw.githubusercontent.com/actionml/PredictionIO/master/bin/install.sh
-o pio-install.sh

$ bash pio-install.sh

At the beginning of the installation process, answer the asked question as follows. Installation roughly
takes 30 minutes.

• Installation path: /root/PredictionIO

• Vendor path: /root/PredictionIO/vendors

• Backend: Elasticsearch + HBASE

• Receive updates: No

• Distribution: Debian

• Install Java: No

In the success case, the output is as follows (please do not run those commands, yet):

Installation of PredictionIO 0.9.7-aml complete!
Please follow documentation at

http://docs.prediction.io/start/download/ to download the engine
template based on your needs

Command Line Usage Notes:
To start PredictionIO Event Server in the background , run: ’pio

eventserver &’
To check the PredictionIO status , run: ’pio status ’
To train/deploy engine , run: ’pio [train|deploy|...]’ commands

Please report any problems to: support@prediction.io

Leave docker container:

$ exit

Get container ID in mico-image:

$ docker ps -all

The output looks like

96

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

00e0d52c621a ubuntu "/bin/bash" 35 minutes ago Exited (0)
9 seconds ago kickass_bartik

In this case, use 00e0d52c621a or kickass_bartik as <ID>:

$ docker commit -m "installed pio 097-aml" -a "username" <ID>
mico -aml:v1

Test Prediction.io status
Enter Docker container:

$ docker run -t -i mico -aml:v1

In Docker container:

$ /root/PredictionIO/bin/pio -start -all
$ /root/PredictionIO/bin/pio status

The last printed line is supposed to be [INFO] [Console$] Your system is all ready to go.

Running Prediction.io using a prepared MICO Dockerfile
Docker accepts git repositories instead of local files as references to Dockerfile & Co. This allows us to
store the Dockerfile inside bitbucket for testing.

You have to adjust the path accordingly (e.g., change the username), see https://docs.docker.
com/reference/commandline/build/ for syntax details. During the build phase, all of the predic-
tion.io requirements (Spark, elasticsearch...) are automatically downloaded and configured inside the
docker container.

In a public release this will be published on a public repository, making this adjustment step only
required for development.

$ docker build --tag="wp5"
https://user@bitbucket.org/mico -project/_
recommendation.git#greenpeace:PredictionIO/docker

$ docker run -p 8000:8000 -p 7070:7070 -p 9000:9000 wp5

Engine is deployed to port 8000 and can be used by the demo interface or showcase partners. Check
http://localhost:8000 for the overview page.

6.3.3 Running the WP5 Demo application

The Mico WP5 demo is a node.js41 application. It is available inside the recommendation bitbucket
repository: https://bitbucket.org/mico-project/recommendation/src/HEAD/Demo/

To run the demo, install node.js (tested with version 6.9.1), npm, the package manager is included
inside the package. Get the code from the repository and run the following commands:

41https://nodejs.org/en/

97

https://docs.docker.com/reference/commandline/build/
https://docs.docker.com/reference/commandline/build/
http://localhost:8000
https://bitbucket.org/mico-project/recommendation/src/HEAD/Demo/

Table 16 Summary of the technology enablers implemented within this work package. Section 5.7 of
report V4 (final specification) gives a more detailed description.

TE-501: User activity and context monitor User data collection is responsibility of the show-
case partners, user behaviour is stored within the
Prediction.io backend.

TE-502: User similarity calculator Covered by Prediction.io.

TE-503: Item Similarity calculator Covered by the cross media entity matching and the
debated classification for the chat analysis.

TE-504: Cross-Modal Content recommender The components developed within WP5 as de-
scribed in Section 6.2.

$ npm install
$ bower install
$ npm run-script start

As default, the demo is available at http://localhost:3000

6.4 Deviations from Report V3 - Enabling Technology Modules: Initial Version

The Technical Report V3 [Aic+14] focused mainly on the usage and deployment of Prediction.io-
engines. While Prediction.io is still in use, the configuration and deployment of engines is now per-
formed automatically by the MICO platform. Over the course of the project, and due to the change
of priorities, focus somewhat shifted, and deviations from the originally planned Technology Enablers
501-504 were discussed in Section 5.7 of report V4 (final specification). Table 16 provides an informal
summary on how the technology enablers were implemented.

6.5 MICO Recommender System – Summary and Outlook

The goal of WP5 was about providing a framework that provides both collaborative filtering and content-
based approaches for recommendations. As outlined earlier, there were significant changes to the func-
tionalities required by showcase partners, which resulted in a focus on the following use cases in y3:

• Editor support use case

• Debated item detection

• Article recommendation based on usage data

• Favorite image recommender

While these use cases are specific to showcase partners and the data they provide, the implemented rec-
ommendation modules are by no means limited to those applications: The provided API is generic and
applicable to many potential adopters of the MICO platform with similar requirements for recommen-
dation.

Due to the fact that WP5 has always depended on to (a) the existence and performance of relevant
WP2 extractors and (b) the availability of the whole MICO platform, WP5 represents the technical

98

WP that is "last in the foodchain" of technical WPs, resulting in the fact that WP5 implementations
started later than planned, and there was only limited time for implementing WP5 functionalities, and to
experiment with them, especially on the cross-media recommendation use cases. As a possible lesson
learned for the future, one could argue that this could have been at least partially avoided by decoupling
WP5 activities from other WPs by creating and using mockup annotations. On the other hand, the
chosen approach led to WP5 effectively validating crucial platform functionalities across all technical
WPs, which was very valuable - many platform issues have been detected by WP5 exploitation all of
them - extraction, extractor orchestration, and anno4j/querying.

Hence, while the recommendation functionalities provided by WP5 should be considered a first basic
functional set, they are fully integrated in the platform, and they are very extensible. We believe that
there is a huge overall potential in using recommendations based on CF and content-based approaches,
and that the recommendation framework within MICO now provides a solid basis for further extensions
in many directions, e.g. using semantic similarity metrics for the entity matching components.

99

References

[Aic+14] Patrick Aichroth et al. D2.3.1/D3.3.1/D4.3.1/D5.3.1 Enabling Technology Modules: Initial
Version. Tech. rep. MICO, 2014.

[Aic+15] Patrick Aichroth et al. Dx.2.2 Specifications and Models for Cross-Media Extraction, Meta-
data Publishing, Querying and Recommendations: Final Version. Deliverable. MICO, Oct.
2015. URL: http://www.mico-project.eu/wp-content/uploads/2016/01/Dx.2.2-
SPEC_final_READY_FOR_SUBMISSION.pdf.

[Ber+16] Emanuel Berndl et al. “Idiomatic Persistence and Querying for the W3C Web Annotation
Data Model.” In: Joint Proceedings of the 4th International Workshop on Linked Media
and the 3rd Developers Hackshop co-located with the 13th Extended Semantic Web Con-
ference ESWC 2016, Heraklion, Crete, Greece, May 30, 2016. Ed. by Raphaël Troncy et
al. Vol. 1615. CEUR Workshop Proceedings. CEUR-WS.org, 2016. URL: http://ceur-
ws.org/Vol-1615/limePaper5.pdf.

[BG14] Dan Brickley and R.V. Guha. RDFS RDF Schema 1.1. W3C Recommendation.
http://www.w3.org/TR/rdf-schema/. W3C, Feb. 2014.

[Boa12] DCMI Usage Board. DCMI Metadata Terms. Tech. rep. Dublin Core Metadata Initiative,
June 2012. URL: http://dublincore.org/documents/dcmi-terms/.

[Bow+15] Alex Bowyer et al. “This Image Intentionally Left Blank: Mundane Images Increase
Citizen Science Participation.” In: Human Computation and Crowdsourcing: Works in
Progress and Demonstrations. An Adjunct to the Proceedings of the Third AAAI Confer-
ence on Human Computation and Crowdsourcing. 2015.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath), Version 1.0. Recommenda-
tion. W3C, Nov. 1999. URL: http://www.w3.org/TR/xpath/.

[DS05] M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Identifiers (IRIs). RFC
3987 (Proposed Standard. Internet Engineering Task Force, Jan. 2005. URL: https://
www.ietf.org/rfc/rfc3987.txt.

[Fel+10] P.F. Felzenszwalb et al. “Object Detection with Discriminatively Trained Part Based Mod-
els.” In: IEEE Pattern Analysis and Machine Intelligence 32.9 (2010), pp. 1627–1645.

[Fou04] The Apache Software Foundation. Apache Camel. Oct. 2004-2015. URL: http://camel.
apache.org/ (visited on 10/30/2015).

[Har+15] Sébastien Harispe et al. Semantic Similarity from Natural Language and Ontology Analy-
sis. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers,
2015. DOI: 10.2200/S00639ED1V01Y201504HLT027. URL: http://dx.doi.org/10.
2200/S00639ED1V01Y201504HLT027.

[HF12] Olaf Hartig and Johann-Christoph Freytag. “Foundations of traversal based query execu-
tion over linked data.” In: Proceedings of the 23rd ACM conference on Hypertext and social
media. ACM. 2012, pp. 43–52.

[HS13] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. Recommendation. W3C,
Mar. 2013. URL: http://www.w3.org/TR/sparql11-query/.

[KSB11] Thomas Kurz, Sebastian Schaffert, and Tobias Bürger. LMF - A Framework for Linked
Media. Workshop on Multimedia on the Web (MMWeb2011) in conjunction with iSeman-
tics2011. Sept. 2011.

100

http://www.mico-project.eu/wp-content/uploads/2016/01/Dx.2.2-SPEC_final_READY_FOR_SUBMISSION.pdf
http://www.mico-project.eu/wp-content/uploads/2016/01/Dx.2.2-SPEC_final_READY_FOR_SUBMISSION.pdf
http://ceur-ws.org/Vol-1615/limePaper5.pdf
http://ceur-ws.org/Vol-1615/limePaper5.pdf
http://dublincore.org/documents/dcmi-terms/
http://www.w3.org/TR/xpath/
https://www.ietf.org/rfc/rfc3987.txt
https://www.ietf.org/rfc/rfc3987.txt
http://camel.apache.org/
http://camel.apache.org/
http://dx.doi.org/10.2200/S00639ED1V01Y201504HLT027
http://dx.doi.org/10.2200/S00639ED1V01Y201504HLT027
http://dx.doi.org/10.2200/S00639ED1V01Y201504HLT027
http://www.w3.org/TR/sparql11-query/

[KSK15] Thomas Kurz, Kai Schlegel, and Harald Kosch. “Enabling access to Linked Media with
SPARQL-MM.” In: Proceedings of the 24nd international conference on World Wide Web
(WWW2015) companion (LIME15). 2015. DOI: 10.1145/2740908.2742914.

[Kö+16] Thomas Köllmer et al. “A Workflow for Cross Media Recommendations based on Linked
Data Analysis.” In: 2016.

[MD13] Fadi Maali and Stefan Decker. “Towards an RDF Analytics Language: Learning from Suc-
cessful Experiences.” In: COLD. 2013.

[MP15] Mico-Project. MICO API Documentation. Oct. 2015-2016. URL: http://mico-project.
bitbucket.org/api/rest/ (visited on 10/30/2016).

[PD09] A. Phillips and M. Davis. Tags for Identifying Languages. RFC 5646 (Best Current Prac-
tice). Internet Engineering Task Force, Sept. 2009. URL: http://www.ietf.org/rfc/
rfc5646.txt.

[PS04] Inc. Pivotal Software. RabbitMQ - Messaging that just works. Oct. 2004-2015. URL:
https://www.rabbitmq.com/ (visited on 10/30/2015).

[RAR14] Josu Bermudez Rodrigo Agerri and German Rigau. “IXA pipeline: Efficient and Ready to
Use Multilingual NLP tools.” In: Proceedings of the 9th Language Resources and Evalua-
tion Conference (LREC2014) Reykjavik, Iceland (2014).

[Red+16] J. Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection.” In: IEEE
Conference On Computer Vision And Pattern Recognition (CVPR). 2016.

[Sch+12] Sebastian Schaffert et al. “The Linked Media Framework: Integrating and Interlinking En-
terprise Media Content and Data.” In: Proceedings of the 8th International Conference on
Semantic Systems - I-SEMANTICS ’12 (2012). URL: http://dl.acm.org/citation.
cfm?id=2362504.

[Sch+14a] Kai Schlegel et al. “Balloon Synopsis: A jQuery Plugin to Easily Integrate the Semantic
Web in a Website?” In: Proceedings of the 2014 International Conference on Developers
- Volume 1268. ISWC-DEV’14. Riva del Garda, Italy: CEUR-WS.org, 2014, pp. 19–24.
URL: http://dl.acm.org/citation.cfm?id=2878379.2878383.

[Sch+14b] Kai Schlegel et al. “Balloon Synopsis: A Modern Node-Centric RDF Viewer and Browser
for the Web.” In: The Semantic Web: ESWC 2014 Satellite Events: ESWC 2014 Satel-
lite Events, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Ed. by
Valentina Presutti et al. Cham: Springer International Publishing, 2014, pp. 249–253. ISBN:
978-3-319-11955-7. DOI: 10.1007/978-3-319-11955-7_29. URL: http://dx.doi.
org/10.1007/978-3-319-11955-7_29.

101

http://dx.doi.org/10.1145/2740908.2742914
http://mico-project.bitbucket.org/api/rest/
http://mico-project.bitbucket.org/api/rest/
http://www.ietf.org/rfc/rfc5646.txt
http://www.ietf.org/rfc/rfc5646.txt
https://www.rabbitmq.com/
http://dl.acm.org/citation.cfm?id=2362504
http://dl.acm.org/citation.cfm?id=2362504
http://dl.acm.org/citation.cfm?id=2878379.2878383
http://dx.doi.org/10.1007/978-3-319-11955-7_29
http://dx.doi.org/10.1007/978-3-319-11955-7_29
http://dx.doi.org/10.1007/978-3-319-11955-7_29

MICO unites leading research institutions from the
information extraction, semantic web, and multi-
media area with industry leaders in the media sector.

Salzburg Research
Coordinator, Austria

Fraunhofer
Germany

Insideout10
Italy

UMEA University
Sweden

University of Oxford
United Kingdom

University of Passau
Germany

Zaizi Ltd
United Kingdom

MICO Early Adopters

MICO is a research project partially funded by
the European Union 7th Framework Programme
(grant agreement no: 610480).

Images are taken from the Zooniverse crowdsourcing project
Plankton Portal that will apply MICO technology to better analyse
the multimedia content. https://www.zooniverse.org

ISBN 978-3-902448-47-7

	Executive Summary
	Enabling Technology Modules for Extractors
	Visual Extractors Status
	Object and Animal Detection – OAD (TE-202) – Update

	Audio Extractors Status
	Automatic Speech Recognition based on Kaldi (TE-214) – Update
	Automatic Speech Recognition based on Microsoft's Bing Voice Recognition (TE-214) – New

	Textual Extractors Status
	OpenNLP Text Classification Extractor (TE–213) – New
	Competence Classification (TE–213) – New
	Text Language Detection Extractor – New
	OpenNLP Named Entity Recognition (TE-220) – New
	Redlink Text Analysis Extractor (TE-213, TE-220) – Update

	Multilingual support
	Final extractor list
	Extractor implementation guidelines – Broker v3
	Extractor API Overview
	Environment and Build
	OS Requirements
	C++ Extractors
	C++ Development Build
	Implementing your own C++ Extractor Service
	Semantic Annotation via Anno4CPP
	Java Extractors

	Enabling Technology Modules for Extractor Orchestration
	Introduction
	Broker Design and Implementation
	Principles
	Broker Components
	Extractor Lifecyle
	Broker Model

	Extractor registration service
	Example registration XML
	REST API

	Workflow Creation
	Using the workflow creation tool
	Camel Route definition
	REST API

	Workflow Execution
	Extractor and workflow status information
	RabbitMQ Endpoints
	REST API methods for item creation and injection

	Content Set, Job and Workflow Management
	Workflow Management: REST API
	Content Manager: REST API
	Job Manager

	Summary and Outlook

	Enabling Technology Modules for Cross-media Publishing
	Anno4j - An Object to RDF Mapping
	Anno4j Persistence
	Anno4j Partial Behaviour
	Anno4j Querying
	Anno4j Extended Features

	Anno4CPP - C++ Proxy for Anno4j
	MMM Extension - Extractor Model
	Conclusion and Outlook
	RDF Schema Enhanced Object-RDF-Mapping
	Validation of Created Metadata
	Visualisation of Queried RDF Results

	Enabling Technology Modules for Cross-media Querying
	SPARQL-MM Extensions
	Linked Data Information Retrieval
	Theoretical Foundations
	Syntax Definition
	Extensions
	Implementations
	Uses Cases
	Future Work

	Semantic Media Similarity
	Semantic Media Similarity
	Further Work

	Enabling Technology Modules for Cross-media Recommendations
	Recommendation Approaches
	Collaborative Filtering
	Content Based recommendation

	Platform Integration
	Recommendation Engine & Demo Code
	Installing the recommendation API
	Installing Prediction.io
	Running the WP5 Demo application

	Deviations from Report V3 - Enabling Technology Modules: Initial Version
	MICO Recommender System – Summary and Outlook

